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Some Empirical Remarks on Using the Box-Cox Power Normal Family
— Applications of a New Power Normal Family —

Takafumi Isogai”

We focus on a behavior of the maximum likelihood estimate A for a power parameter 4 of the Box-Cox
power normal family. The m.l.e. 1 is invariant under a common scale transformation of the relevant
random variables, but in two-sample as well as multi-sample cases its scale-invariant property is broken
under individual scale transformations of each random variable. In the present paper, by using the generalized
F distribution and its approximate statistical model, that is, a new power normal family introduced by the
author, we exhibit various examples to show unexpected behaviors of 1 and other parameters’ estimates
under scale transformations.

Keywords: non-normality; bootstrap generalized information criteria; generalized F distribution; Box-Cox

power normal family; new power normal family

I. Introduction

In practical fields, such as quality control and social sciences, we often come across non-normal data
comprised of positive numbers, of which distributions are unimodal and positively or negatively skewed. A
well-known statistical model to deal with such non-normal data is the Box-Cox power normal family
(shortly, BC family) due to its easy handling (Box and Cox [1]). Recently, a new power normal family
(shortly, NP family) has been introduced through the generalized F distribution, and is expected to have the
same performance as BC family (Isogai [4]).

In regression analyses with respect to both families, our case studies (Isogai [4] and [8]) indicate that
both families have the same performance in the meaning of goodness of fit, but there is a striking
difference in estimation of power parameters, that is, estimates of power parameters have opposite signs.
Furthermore, absolute values of estimates of power parameters with BC family are small. This fact
suggests that an appropriate transformation is Logarithmic transformation under BC family. A similar
situation often happens in a multi-sample case under BC family. Therefore, in the present paper, by using
statistical properties of NP family, we shall investigate possible situations that cause a fluctuation of signs
or small absolute values in estimation of power parameters with respect to BC family.

NP family has been constructed by Isogai [3] from the generalized F distribution (see Prentice [12])
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through a Wilson-Hilferty type power transformation of an F random variable. A random variable X of the

generalized F distribution is defined by

\V4
X =y} Q)

for n>0,y>0,¢ >1 and ¢, >1, where F;f‘ be the random variable of a central F distribution

with degrees of freedom (24,,2¢,) . The definition of NP family is that the following random

variable

)
1 { X\ 2
g 1[7]j - exp[—é' ] (23)
or equivalently
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is approximately distributed as the standard normal variable for 7>0,0 >0, =1logn and
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In the following, when we need not distinguish between our equivalent models (2a) and (2b), we call them
simply NP family (2) and denote NP family (2) by NP (é‘, 0',77) .

As & tendsto zero, log X is nearly distributed as the normal distribution with mean ¢ (= logn)
and variance o . When & is near—1/3, the distribution of X is approximated by the extreme value

distribution of Type 2 (see Johnson, Kotz and Balakrishnan [9]):

Pr(X <x)= exp{—(;j;}

for x>0.When ¢ isnear 1/3, the distribution of X is approximated by the Weibull distribution, of

which distribution function is given by

Pr(X <x)=1- exp{—[;]é}
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for x >0. Under a scale transformation of X — 6X (6>0), &and o of NP family (2) are invariant.

On the other hand, the Box-Cox power normal family (BC family) is defined by normality of the

i_
%{Xﬂ 15} ®)

for 7 >0 (for the details, see Box and Cox [1]). The random variable(X’I —1)/1 is supposed to be

following random variable

approximately distributed as normal with mean & and variance 2. We denote BC family (5) by
BC(4,7,¢).

BC family is closely related to NP family, because a different expression of parameters in NP family
(2a) gives us BC family. A comparison between (2a) and (5) gives us the following parameter
transformation from (8,0,7) to (4,7,&) :

77]” exp(—é’z) -1
PR p— e=—— (620) (6)
7 & =logn (5 = 0)

We remark that 4 of BC family (5) is invariant under a scale transformation of X — 60X (9 > O) .

Furthermore, for a comparative purpose we shall consider an intermediate family between NP and BC

families. Replace exp(—6 2) by one and put 6/c=Aonly in NP family (2a), then we can define a

modified new power normal family (shortly, MNP family hereafter) by normality of the following random

variable

(@)
The random variable {(X / 77)1 - 1} / A is supposed to be approximately distributed as normal with mean

zero and variance o> . MNP family is similar to BC family (5) in the meaning that A is the same power
parameter. We also remark that A of MNP family (7) is invariant under a scale transformation
of X > 0X (6 > 0). MNP family has shown its good performance in practical applications (Isogai [7]).
We denote MNP family (7) by MNP (4,0,7) .

In our simulation study, regarding a true population, we adopt some kind of the generalized F
distribution (1), of which parameters are given by parameters {5 ,0',77} of NP family (2), i.e. NP (5 ,0',77) .

In Section 2 we define this generalized F distribution and denote it by GF (5,6,77) .
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In Section 3, we consider a one-sample problem based on sampling data coming from GF (5, 0',77) .
First we show the equivalence of NP (8,0,77) and BC(4,7,£) in the meaning that their parameter spaces
have a one-to-one mapping. This one-to-one mapping suggests the existence of some non-linear
relationship among parameters of BC (/1,2',§ ) , which causes great variations of estimates of
parameters ¢ and & under a scale transformation of X — 6.X (9 > O) . In the last of Section 3, we exhibit
simulation results for statistical modeling, in which comparison with BC, NP and MNP models is made by
bootstrap generalized information criteria under a scale transformation of X. The degree of prediction error
with BC family varies greatly according to choices of a scale transformation of X, but there is no
fluctuation in the degree of prediction error with respect to NP and MNP families.

In Section 4 we focus on a two-sample problem based on sampling data coming from two populations

GF (5,5,771) and GF (5,0,;72). In case of , #n, we show that signs in estimates of the power

parameter A of BC family are apt to change, and at the same time a tendency of Logarithmic transformation
appears in BC family.

In Section 5, we examine a multi-sample case, especially, multifactor designs.

Finally, in Section 6, we shall consider a more general regression structure than multifactor designs. In
the general regression situation, a scale-invariant property of estimates of dand Ain NP and MNP
families does not hold any longer under individual scale transformations of each random variable. However,
using the fact that effects of scale transformations of random variables can be attained by tuning design
matrices in regression structures, we can examine the maximum likelihood estimate of the power
parameter A of BC family as well as estimates of power parameters 0 and A in NP and MNP families.
Changes of a design matrix cause large fluctuations of an estimate of Ain BC family, but estimates of

power parameters O and A in NP and MNP families are hardly affected and remain stable.

I1. Choice of a True Population for a Simulation Study
We should choose freely one of NP, BC and MNP families as a true population, but we cannot use them
directly in our simulation, because these families are incomplete distributions. On the other hand, we know
that NP family (2) is an approximate distribution to the generalized F distribution (1), but BC and MNP
families do not have such a property. Therefore, we first specify parameters of NP family (2), and then
simulate random numbers from the corresponding generalized F distribution (1).

NP family (2) has three parameters 0, o and 7, and the generalized F distribution (1) has four

parameters ¢, ¢, y and n.As p is common, we have only to decide how to specify ¢, ¢ and

y forgiven 0 and o.
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Before specification of parameters ¢, ¢, and y , we recall some restrictions concerning 5, and o :

| 1 172
(1) O<§2 <1 52—[—4'—] 5
)
(i) 0<o<l.
These restrictions were introduced to evaluate approximate formulas about the expectation E[X] and
variance V(X) of NP family (2) (see Isogai [5]). Especially, the condition (ii) 0<o <1 ensures
unimodality of the generalized F distribution (1) (also see Isogai [4]).
Furthermore, from the definitions of & and o, in (4), we have relationships between ¢ (i =1,2)

and §(=6,6,):

(172)8,2(1+368)) = (1/2) 5,(5, +36)
(1/2)8,2(1-38) = (1/2)8,(5, -38)

—_——
S S
||_ ||_

1. Random number generation from the generalized F distribution
Forgiven 0 (—1/3<0<1/3)and o (0<o<1),we specify parameters ¢, ¢ and y as follows:
Step one. Choose &, so as to satisfy 3|5| < 8, < 1. For example, we set
1-3|4]
100

5y =3|6]+

s

where the number 100 is selected appropriately to make &, closer to 3|5 | . This setting is motivated to
make ¢ and ¢ as large as possible because NP family (2) is a good approximation to the generalized F
distribution (1) with large ¢; and ¢, (Isogai [3]).

Step two. Put =2 and ] =i .
&) &

Step three. Put

-1 -1
5,7 (1435, 8,7 (1-35
¢1=—2 ( 1) and ¢ = = ( l) .
2 2
Step four. For any given?] (> 0), generate a random number
(24 )
X =77‘\Fz¢2 ] .

We denote this generalized F distribution corresponding to given ¢ and o by GF (5 ,0, 77) .
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2. To use the (n+1)-quantiles of the generalized F distribution GF(5, o, 77) as a sample

Here we explain our sampling scheme in the following simulation study. Instead of random sampling we
use the (n+1)-quantiles as a sample of size n. The (n+1)-quantiles of size n, i.e. {x(l),x(z),"-,x(”)} from
GF (5,0‘,77) with any 7 are defined by

x(i):n{F"(nilj} (i=1,m), @®)

where F~' (+) is the inverse of the cumulative distribution function F (x) of FZZ;? .

Skewness G3
20

0=-0.2
d=-0.3 0=-0.1

T2 04 06 08

(a) The graph of the measure of skewness G3

Kurtosis G4
30

25

20

(b) The graph of the measure of kurtosis Ga

Figure 1. Graphs of measures G5 and G, .
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Figure 2. Two cases of density functions of the generalized F distribution GF (5 ,o-,n) .

3. Shapes of the generalized F distribution GF (5, o, 77)

We give some concrete images about the generalized F distribution GF (5 ,cr,r]) corresponding to given &

(-1/3<6<1/3)and o (0<o<l).

Figure 1 shows graphs of the measures of skewness G3 and kurtosis Ga with respect to GF (5 ,0',77)

forsome 6 and o (0<o<l), where Gs and Gaare defined by
E[(X —E[X])q E[(X - E[X])q

G = and G4 =
or-aor]

oc-senr]”

From Figure 1 we know that values of G3 and Gu are positive in the most part of the parameter domain

2

0 (-1/3<8<1/3)and o (0<o<l). The degree of non-normality is low when o is small, and
non-normality seems more serious as o becomes larger.

In Figure 2 we give two cases of density functions of GF (&, 0,7) corresponding to 6 =0.1and 0=0.5.
From Case (2) in Figure 2 we know that when & approaches to — 1/3 in case of large o , the right-hand tails

of densities spread out more and more. These tendencies seem to reflect well large positive Gz and G4.
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II1. One-Sample Problem
1. Moments of BC and MNP families under the generalized F distribution GF(5 R 0',77)

Let X be a random variable of the generalized F distribution GF (é‘,o-,r;). We give the first three

. 2
approximate cumulants «, , k', and x,of X :

(1) x,=E g [Xq =n exp(—yjo-/l +O-72},2 + 0'/10(522)J

2 30 o’ ., )
=7 (1— At A010(87) . ©)

@V (X4) -1 cp( 2050102 a0 (57 ool s 20(57) 1)

=i (0?4 +0°270(8))). (10)
Especially, Vg, (X*)~ 220* (B[ X*]) . (1)
(3) ,=E; [(X“ ~E [ X ])3} =300 (Ao -8)+ 2'0’0(8,")], (12)

where a symbol 0(522) stands for so-called “Landau notation” or “Big-O notation”.

Ay
To prove the above results, we have only to notice an expression X* = 7 (I*}ZIZZ ) in the appendix of
Isogai [5]. Using these cumulants «, , x, and x; of X *, we can obtain the first three

cumulants x,, &,”¢ and x,*° of(Xl - 1) / A for BC family as follows:

X -1 7t -1 3¢ o’
BC _ _ 2 2
K, EG{l}— T+ {—2+2/1+0'0(52) , (13)
l— N
;c;‘C=VGF{X/1 1]=77“02{1+0(5;)}, (14)

[ e oy o
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Similarly, the first three cumulants x,"™" , x,"™" and ;""" of((X In)" - 1) / 2 for MNP family are as

follows:
| X/n | 30 o’
KM =E_ (#) :—7+7/1+0'O(§22), (16)
X/n) -1
KzMNP:VGF ( Z) ]:OJ {1+0(§22)}, (17)

i (x/n)" -1 (X /n) -1

KSWPZEGF[ ! —EGF[ - U :,73{3(/10—5)+0(522)}.(18)

When A=6/0, BC and MNP families attain normalizing transformation in the meaning that the

. . - 3/2 3/2
standardized third order cumulants ,*° / (K‘ZBC) and «,"™" / (K'ZMNP) are nearly equal to zero. In case

of A=0, Logarithmic transformation appears, and x," / (K'ZBC )3/2 and "™ /(K'ZMNP )3/2 are nearly equal

to =36 . This fact means that Logarithmic transformation never attains normalizing transformation

unless § =0 . The formula x,"™" tells us that it is natural to consider & as a dispersion parameter in our setting.

2. One-to-one mapping between parameter spaces of BC and NP families

For a parameter space of NP (5 ,0',77) , we put
Myp ={(8.0.7)|-0 <& <0,6> 0, >0}. (19)

To construct a parameter space of BC (l,r,f:) , from the last equation of (6) we need a restriction
1+A&E>0, (20)

and so we put
e ={(4.7.€)|-0 < A<o0,r>0,~0< & <o0,1 + AE> 0. @21

For given any point (Z,r,/j) inIgc, the corresponding point(&,o-,n) inITyp is given by the
following equations
. n=exp(10?)(1+2¢)"* (220)

, 0=10, . (22)
I+4g n=expé (/7.:0)

aexp(ﬂ.zaz) =
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A function o-exp(/12 02) in the first equation of (22) is a strongly increasing function of o, and so o is

determined uniquely. Parameter spaces ITyp and ITgc have a one to one mapping (6) and its inverse
mapping (22). Thus, BC (Z, 7,& ) with ITgc and NP (5 ,0',77) with ITyp are equivalent models with different

parameter representations.

The parameter space ITpc has some singular property. Parameterization (6) indicates the existence

of some functional relationship among &, A4 and z such that

T
1+A&°

Gexp(é‘z) = (23)

For fixed 0 and o, under a scale transformation of X — 6X (9 > 0) , Ais supposed to be invariant, and
o-exp(§ 2) in the left hand side of (23) is constant. Thus, & and 7 are functionally related to each other. This

fact is reflected in parameter estimation of £ , A and z ,that is, estimates of £ and  are highly correlated.

3. Effects of fluctuations of 77 in a one-sample problem
For a given sample of size n from GF (5,0-,77) , we shall examine maximum likelihood estimation of

parameters in BC (/l,z',é) , NP (5,0‘,77) and MNP (/1,0',77) families. Let us denote a product of » densities

with respect to GF (5,0‘,77) by GF(5,0,n)n . Similarly, BC(/I,T,f)n , NP(5,0,n)n and MNP(&,O',?])”
express products of n BC, n NP and » MNP densities respectively. Also, let us denote maximum likelihood

estimates of 8, o and w(=log(n)) of NP(5, 0',77)” by S, Gy and o, (= log(7y, )) - Similarly, let us

denote maximum likelihood estimates of A in BC(/l,T,f)n and MNP(&,O’,U)" by Apc and Aynp

respectively. The other estimates are denoted by 7, & , 6, and /iy (=1og(yne)) -

Here we give a remark concerning the maximum likelihood estimation of {/1,1,5 } in BC(/LT,§)" .

For a given random sample {X, =x,X, =x,,--,X, =x, | from GF(5,0,77), we use the standardized

power transform

x" -1

(2 _ /1)'/”71 ,for A #0,

xlogx,,forA =0,
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where

. H" 1/n
r= i1

is the geometric mean of the observations x,,x,,-,x,.

n

In the following sections, to estimate parameters in
BC families we always use the above power transform. For the details of the power transform, see Box and
Cox [1], and Draper and Smith [2].

Now we give an example. Using the formula (8) we first draw the (n+1)-quantiles of size n=30 from

GF (8,0,n7) with 6=-0.3, o=0.1and77=1. Then, we move 5 in the form of 5 = exp(/ndex)

—5< Index <5), and examine behaviors of estimates A p- , Z and 7 of BC A,7,¢ " as well as a
( BC

ratio 7 / (1 + /A'LBC 5) . The result is given in Table 1.
Clearlyg2 and 7 change together extremely according to varying z . On the other hand, the ratio
;/(1 +ABC ;‘) seems to be constant as expected. Estimates of power parameters A BC » Sand A MNP are

invariant under a scale transformation of X. Values of 1z and 4 yyp are very close. Also, estimates of

dispersion parameters &, and 6,,,, are invariant and close. Values of zyp and /i y;p move in a similar

way. There is no difference in minimum values of negative log-likelihood functions with respect to BC, NP

and MNP families.

Table 1. Example on behaviors of power parameter estimates and the other parameter estimates in BC, NP

and MNP families for the one-sample case: GF (5, G,?])n withn=30,6=-0.3,0=0.1,7 = exp(Index)

( Index =—5,~4,--,4,5 ) and Ratio = %/(1 +713c§) .

Index ):BC 7 £ Ratio 5 Gy [ /iMN,, [ fhe | MinBC | MinNP | MinMNP
-5 -2.402  |1.512E+04|-6.300E+04| 0.0999 | -0.227 | 0.0949 | -4.987 -2.402 0.0999 | -4.966 |-174.181 |-174.181 | -174.181
-4 -2.402  [1.369E+03|-5.705E+03| 0.0999 | -0.227 | 0.0949 | -3.987 -2.402 0.0999 | -3.966 |-144.181 |-144.181| -144.181
-3 -2.402  |1.240E+02|-5.162E+02| 0.0999 | -0.227 | 0.0949 | -2.987 -2.402 0.0999 | -2.966 |-114.181 |-114.181| -114.181
-2 -2.402  [1.122E+01{-4.636E+01| 0.0999 | -0.227 | 0.0949 | -1.987 -2.402 0.0999 | -1.966 | -84.181 | -84.181 -84.181
-1 -2.402  |1.016E+00|-3.819E+00| 0.0999 | -0.227 | 0.0949 | -0.987 -2.402 0.0999 | -0.966 | -54.181 | -54.181 -54.181
0 -2.402  [9.204E-02| 3.279E-02 | 0.0999 | -0.227 | 0.0949 | 0.013 -2.402 0.0999 | 0.034 | -24.181 | -24.181 -24.181
1 -2.402 |8.334E-03| 3.816E-01 | 0.0999 | -0.227 | 0.0949 | 1.013 -2.402 0.0999 | 1.034 5.819 5.819 5.819
2 -2.402 |7.547E-04| 4.132E-01 | 0.0999 | -0.227 | 0.0949 | 2.013 -2.402 0.0999 | 2.034 35.819 35.819 35.819
3 -2.402  |6.834E-05| 4.161E-01 | 0.0999 | -0.227 | 0.0949 | 3.013 -2.402 0.0999 | 3.034 | 65.819 | 65.819 65.819
4 -2.402  [6.188E-06| 4.163E-01 | 0.0999 | -0.227 | 0.0949 | 4.013 -2.402 0.0999 | 4.034 95.819 95.819 95.819
5 -2.402 |5.603E-07| 4.163E-01 | 0.0999 | -0.227 | 0.0949 | 5.013 -2.402 0.0999 | 5.034 | 125.819 | 125.819 125.819
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(Note: MinBC, MinNP and MinMNP mean the minimum values of negative log-likelihood functions with

respect to BC, NP and MNP families respectively.)

4. Model selection using bootstrap generalized information criteria

Let us denote one of densities with respect to BC, NP and MNP families by g(x\ﬁ) , where a parameter
vector @ means one of corresponding parameter vectors (4,7,¢), (J,0,7) and (4,0,7). For a given

random samplex™ = {x,,x,,+,x, }, put

L(x(”)

0)= %Z’;ZI logg(x,|6). 24)

Maximization of L (x(") 9) with respect to 0 gives us the maximum likelihood estimate é(x(")) .

In statistical modeling, when we encounter a problem of model selection, we want to choose a model

having a small prediction error. Our prediction error can be evaluated by the following risk

E . E, [—logg(Z‘ﬁ(x(”)))J, (25)

() ()

where random variables Z and X'’ are independent, and expectations with respect to Z and X’ are defined

by their common unobservable true population. The above risk is so-called “information criterion” based
on “Kullback-Leibler information” (see Kullback [11]). A well-known estimate of the risk is Akaike’s

Information Criterion, i.e. AIC, which is given by

AIC=—L(x"]6(x"))+Bias, (26)
where
Bias :ldim(e) . 27)
n

The derivation of Bias in AIC depends heavily on regular properties of the density g(x‘ 0) . On the other

hand, our density g(x‘()) is an approximate and incomplete one, and so we cannot estimate a bias term

analytically. However, using bootstrap methods (see Efron and Tibshirani [3]), we can indirectly estimate

the bias term. Thus, due to improper properties of the density g(x‘ 0) , our risk is considered as “generalized

information criterion”. For the details of “information criteria” and related topics, see Konishi and Kitagawa

[9].

Let us denote B bootstrap samples generated from the original data set x ={x1,x2,-~- x}

>n

by y ™ (b)={y,(b).,(b)..y, (b)} (b=1,2,---,B), where y, (b) (a=1,---,n) are obtained by randomly
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sampling n times, with replacement, from x™ ={x,,x,,--,x,}. For the b-th bootstrap sample

v () =1{»,(b).,(b)..y, (b)} , maximization of L(y(") (b)|6) with respect to 0 gives us the maximum

likelihood estimate é(y“” (b)) . Then, an estimate of “generalized information criterion”, i.e. GIC is given
by

GIC=-L (x“”

0(x")) + Bias. (28)

where a bootstrap bias estimate is constructed by

—

Bias = %z; {L(y“ﬂ (b)

é(ym (b)))—L(x(”)

oy (b)))} )

Table 2. Example on behaviors of bootstrap generalized information criteria n GICy,. , nGIC,, and

n GIC,,, with respect to BC, NP and MNP families for the one-sample case: GF (5, 0,77)” withn =30,

§=-03,0=0.1,7=10"" (-5<Index<5). nGIC, =Min(*)+nBias() (*=BC,NP,MNP) and

calculation of 7 B/i;s‘(*) is based on 10000(=B) bootstrap samples.

Index MinBC MinNP MinMBC 1 Biassc n Biase 1 Biaswe nGICy, nGICy, nGICyyp
-5 -369.569 -369.569 -369.569 1.62E+08 2743 2776 1.62E+08 -366.826 -366.793
-4 -300.491 -300.491 -300.491 4.58E+06 2.541 2570 4.58E+06 -297.950 -297.921

3.7 -279.768 -279.768 -279.768 2.18E+04 2.568 2.598 2.16E+04 277.199 -277.170

3.5 -265.952 -265.952 265.952 2.630 2.622 2.650 263322 -263.330 -263.302

32 245229 245229 245229 2.650 2.637 2.665 242579 242,592 -242.564

3.1 238321 238321 238321 2702 2.695 2724 -235.620 -235.626 -235.597
3 231413 231413 231.413 2.689 2.683 2713 228.725 -228.730 -228.700
2 -162.336 -162.336 -162.336 2.660 2.656 2.683 -159.676 -159.680 -159.652
-1 93.258 93258 93258 2566 2558 2583 -90.692 -90.700 90.675
0 24.181 24.181 24.181 2570 2568 2592 21611 21613 21.588
1 44.897 44.897 44.897 2.686 2.684 2713 47583 47581 47.610
2 113.974 113.974 113.974 2.554 2.550 2577 116528 116.524 116.552
3 183.052 183.052 183.052 2.892 2,610 2.636 185.944 185.662 185.688
3.1 189.960 189.960 189.960 5532 2549 2574 195.491 192.508 192,534
32 196.867 196.867 196.867 61.618 2610 2.640 258.486 199.478 199.507
35 217.591 217.591 217.591 3.90E+04 2.640 2.667 3.92E+04 220231 220.257
37 231.406 231.406 231.406 5.61E+06 2.639 2671 5.61E+06 234.045 234.077
4 252.129 252.129 252.129 5.44E+09 2.651 2.682 5.44E+09 254,781 254.812
5 321.207 321.207 321.207 4.83E+19 2.668 2.698 4.83E+19 323.875 323.905

(Note: MinBC, MinNP and MinMNP mean the minimum values of negative log-likelihood functions with

respect to BC, NP and MNP families respectively.)
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Now we check GIC with respect to BC, NP and MNP families. We first draw the (n+1)-quantiles of size
n=30 from GF(5,0,n7) withd=-0.3,0=0.1and77=1, which is the same sample in the preceding

subsection. Then, we mover as7 = 10/ndex (—5 < Index < 5) , and, by using 10000(=B) bootstrap samples

generated from the original sample quantiles of size n=30, examine behaviors of n GIC;. , n GIC, and
n GIC ,, , where n GIC means GIC times n. The results are given in Table 2.

Clearly n GIC,. becomes larger than n GIC,, and n GIC,,, , as the absolute value of Index deviates
from 3. Especially n Biassc becomes considerably larger than n Biasne and 7 Biaswe , as 57 becomes fairly

large or fairly small. On the other hand, » Biasne and 7 Biaswne  are small and stable in all cases of n . The

degree of prediction error of BC family is larger than that of NP and MNP families.

IV. Two-Sample Problem

We consider two populations GF (5,0,77] ) and GF (5, 0,772) , where d and ¢ are common but 77's are
different, and distinguish their random variables X; and X, by subscripts 1 and 2. For given two random

samples of sample sizes n and n, from GF (5,0,7;)and GF (5,0,7,), we denote their joint densities

by GF(5, o,m )”' and GF(5, o, )n2 respectively. We shall examine maximum likelihood estimation of

2
parameters in BC families ) 1BC(/1,T,§,»)n‘ , NP families

i=

2 n; a1
) 1NP((S‘,G,?]I«) " and MNP families

i=

2 )
lMNP(&,o-,ni )

i=

2 .
In applications of BC families I | ] lBC(ﬂ,r,é)n’ , we assume equality of variances with respect to
i=

transformed variables X,* and X,* . Their nominal means and variances with respect to X’ 1/1 and X 21 are
given by

Ey[ X =14 28 (i=1,2) Ve (X )= 27 (i=1,2). (30)

1. Inevitability of Logarithmic transformation

We examine a case where variances of X] 11 and X 2}“ are equal to each other. Put

Xt -1 X, -1
VGF( 1/1 J:VGF[ 2/1 J (€29)]
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Then, from the formula (14), the above equation leads to

/1(10g77l —10g772):0 (32)

Unless n, =n, , A is always equal to zero. A situation 77, # 7, is apt to suggest that Logarithmic

2 )
transformation is appropriate for BC families lBC(ﬂ.,z’,ffi )"‘ .

i=

2. Some relationship among parameters of BC families

For joint densities GF(5, o,mn )n‘ and GF(5, o, )n2 , the total of variances with respect to X,* and X," is
TV =nVer (X, )+ Ve (X, ) =m 2207 (EGF [Xﬁ])z +n, A0 (EGF [Xz‘])z , (33)

2
where we have used the formula (11). In applying BC families ) lBC(l,z’,é )ni , the total of variances

i=

oqe 2 n. .
for BC families ]BC(ﬂ,r,g‘i) " s

i=
TVpe = Ve (X, )+ Ve (X, ) = (my +1,) 227 (34)
Here, we suppose that
TV =TVye, Ege| X ]=Ene[ X/ ] (i=1,2). (35)

Then, we have the following relationship

o= ‘ . (36)

\/ o (1+a8) + (14 48)

n +n, n +n,

Parameters {ﬂ,,r,cfl,fz} of BC(l,r,ﬁl) and BC (/1,7,52) are functionally related to each other. There is a
possibility of high correlations among estimates of parameters {/1,1,9‘1,52} . The relationship (36) seems to

be an extension of (23).

3. Effects of fluctuations of7; and 5, in two samples from GF (5,0,7,) and GF (5,0,1,)
Now we give a simple example. For the case 0 =—0.3,0=0.1and77=1we first generate two sets of
(nt+1)-quantiles of sizes n; =30 and n, =20 from GF (5,0,77) . Then, we construct two samples from

GF (8,0,m) and GF (8,0,7,) with fixed 7 and varying 7, . Here we put 5 =exp(-3) and
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n, = n exp(Index) , where Index takes integer values from -5 to 5. For given two sets of
( n; +1)-quantiles (i=1,2) from GF (8,0,7) and GF (5,0,77,) with 7 (=exp(y)) and 7,

n;

2
(=exp()) , we estimate {4,7,&,&,} of H lBC(ﬂ.,T,g‘,-) and examine behaviors of not only
i

”_1(1 +2BC921)2 b2

-~ ~A\2
(1+/13c§2) . The
n1+n2 n1+n2

estimates EBC s fi i=12) and;but also a ratio 7/

result is given in Table 3.

Clearly, in a situationn, # 7, (or &4 # i, ), ABc moves around zero, which indicates Logarithmic
transformation, and has positive and negative signs. Also, E 1 ,32 and 7 change together solidly according
to varying 77, . On the other hand, the case 77, = 7, (or 4, = 1, ) suggests a true value of ABc , which is far

from Logarithmic transformation. Absolute values of 31 s é?z and 7 become very large. The

n Y n
_1(1+1BC§1> +—2
n +ﬂ2 ny +n2

A ~A A2
ratio 7/ (1+ABC§2) seems to be almost constant as expected.

Behaviors of Apc show that Apc is not invariant under scale transformations of X , — 6, X, and

X,—>60,X,(6,#6,,6,>0,6,>0).

Table 3. Example on behaviors of power parameter estimates and the other parameter estimates in BC,

NP and MNP families for the two-sample case.

m o | Ay 7 & g | Rato| § G | AT BT | A | Gwe | 4™ | 2™ |MinBC |MinNP [MinMNP
3 -8 |-0.0113| 0.1112 | -3.003 | -8.323 |0.1050 |-0.2225(0.0938 | -2.987 | -7.986 | -2.396 | 0.0985 | -2.966 | -7.965 |-289.35(-291.07| -291.07
3 -7 |-0.0149| 0.1125 | -3.019 | -7.327 |0.1050 |-0.2225|0.0938 | -2.987 | -6.986 | -2.392 | 0.0986 | -2.966 | -6.965 |-269.35|-271.07| -271.07
3 -6 |-0.0216| 0.1149 | -3.049 | -6.353 |0.1050 |-0.2225|0.0938 | -2.987 | -5.986 | -2.394 | 0.0985 | -2.966 | -5.965 |-249.36|-251.07| -251.07
3 55 |-0.0372| 0.1208 | -3.121 | -5.440 |0.1049 |-0.2225(0.0938 | -2.987 | -4.986 | -2.392 | 0.0985 | -2.966 | -4.965 |-229.38|-231.07| -231.07
3 -4 ]-0.1023| 0.1479 | -3.448 | -4.874 |0.1047|-0.2225(0.0938 | -2.987 | -3.986 | -2.391 | 0.0986 | -2.966 | -3.965 |-209.44(-211.07| -211.07
3 -3 |-2.3906|118.2664(-501.551|-501.651| 0.0985 [-0.2225( 0.0938 | -2.987 | -2.986 | -2.393 | 0.0985 | -2.966 | -2.965 |-191.07|-191.07| -191.07
3 2 |-0.0190| 0.1104 | -3.037 | -1.991 |0.1052 |-0.2225|0.0938 | -2.987 | -1.986 | -2.394 | 0.0985 | -2.966 | -1.965 |-169.31|-171.07| -171.07
3 -1 |0.0064| 0.1038 | -2.925 | -0.951 |0.1052 |-0.2225|0.0938 | -2.987 | -0.986 | -2.393 | 0.0985 | -2.966 | -0.965 |-149.31|-151.07| -151.07
3 0 |0.0078| 0.1038 | -2.919 | 0.046 |0.1052|-0.2243]0.0937 | -2.987 | 0.014 | -2.394 | 0.0985 | -2.966 | 0.035 |-129.32|-131.07| -131.07
3 1 [0.0072] 0.1042 | -2.922 | 1.050 |0.1052|-0.2225[0.0938|-2.987 | 1.014 | -2.393 | 0.0985 | -2.966 | 1.035 |-109.32|-111.07| -111.07
3 2 [0.0063| 0.1045 | -2.925 | 2.059 |0.1052|-0.2225]0.0938 | -2.987 | 2.014 | -2.392 | 0.0985 | -2.966 | 2.035 | -89.32 | -91.07 | -91.07

2 )
(Note: The true densities are ) 1GF(é‘, o,1; )n’ withn, =30,n, =20,06 =-0.3,0 =0.1, 7, = exp(—3),

i=

n, =m exp(Index) (Index =-5-4,--,5) . Ratio=7/ L(1+23c5’21)2+n72(1+23c522)2 )
n, +n, n, +n,
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4, =logn, and u, =logn, . MinBC, MinNP and MinMNP mean the minimum values of negative

log-likelihood functions with respect to BC, NP and MNP families respectively.)

2 .
Regarding estimates for {5, o, 41, 11, } of NP families I | A INP(é‘ ,o,1;)"" and estimates for {1, 4, 1, } of
i=

2 . [N . .
MNP families ) lMNP(5,0',771~ )"’ , values of 0, Ay, » Gy and Gy, seem to be invariant under scale
i=

transformations of X, - X, and X, - 6,X, (6,>0,6,>0).
Also, 2™ and 2" as well as 2, and f,"™" are close, and their values seem near to true values.

There is hardly any difference in minimum values of negative log-likelihood functions with respect to BC,

NP and MNP families.

V. Multi-Sample Problem

Our results in the preceding section are easily extended to a multi-sample case. Now suppose that we have

M random samples of their sample sizes n; drawn from GF(&, a,r]i) (i=1,-+-, M), and denote their joint
. M n; . . . .. . . .
density by I | ) lGF (5, o, ni) " . We shall examine maximum likelihood estimation of parameters in BC

i=

families IBC(/l,T,é‘[) ", NP families

i=

M M

1NP(5, o,n; )n" and MNP families 1MNP (5, o,n; )n’ .

i= i=

M
Regarding parameters in BC families ) 1BC(/1,T,§,»)n‘ , a similar discussion about the formula
i=
(36) leads to the following relationship
o= ‘ . (37)
Jl > (1+28)
no+n, +o+n, —°

M n; .
Parameters {1,7,&,,&,,-+. &, } ofl I _ IBC(/l,r,fl-) ' are functionally related to each other.
i=

Similarly to two-sample cases in the preceding section, an invariant property of the maximum

likelihood estimate A may be expected to be broken under scale transformations of X; — 6,X; (6; > 0)

(i:1,~~-,M ) Furthermore, the absolute value of iBC may become small as discrepancies in7's of

M "
GF(5,O‘,I]1-) " become large.

i=l1
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1. Four-sample case
To check our conjecture on the behavior of }:Bc , we give an example of a four-sample case. For the case
0=-03,0=0.1, we generate (n+1)-quantiles of sizen =8 from each of GF (5,0,7;) (i=1,2,3,4),
where we suppose that

m=exp(fy) .1 =exp(fo+ b))

n3 = exp(ﬂo +ﬂ2) >4 = exp(ﬂo + 5 +ﬂ2) >

Po =5, =0.1xIndex , ff, =0.2x Index ,
and Index takes integer values from 0 to 10. Note that the above setting is equivalent to a simple version of

Example A3 [Two-factor design] in the Appendix, where we have only to puta =2 and b =2 in Case (ii).

As Index becomes large, discrepancies in7,'s become large. We also put parameters & (i = 1,2,3,4) of

BC(4,7,&) (i=1,2,3,4) as
S =V0,5=Wo+V1, 53 =W+, 54 =Wo+yY +¥> .
According to each Index , using four samples from GF (5,0,7;) (i=1,2,3,4) mentioned above, we

n;

4 S A
estimate {l,f,y/o,wl,y/z}ofl | ) IBC(/l,T,«;“i) and examine behaviors of not only estimates A 5. ,v; (i
i=

4 5 12
) lni(l"'ﬁ'BCé) /(n1 +ny +n3 +n4)} ,wheren, =n, =n; =n, =8,
i=

=0,1,2) and Zbut also a ratio 7/ {Z

and we put & =yo.& =y +y1.E =W + Vb =W+, ¥, - At the same time, we estimate

4 m; 4 m;
(6.0.80. 508} of [ | NP(S.0.m) and {20, 51,5} of [ | MNP(L,07;) . Results are given

in Table 4.

n;

. 4
Clearly a change of Index causes fluctuations of A 5. with respect to | | ) IBC(/l,T,«;“i) , and
i=

large values of Index indicate Logarithmic transformation. Also, in comparison to ﬂAo , W, changes greatly

according to Index .

. 4 A a2 4 1z
On the other hand, the ratio 7/ E o (1 +1 BC@‘) / E o seems to be nearly constant as
i= i=

expected. Also, &, Ay » Fyp and 6, are invariant under scale transformations. The values of A and
pMNP (i=0,1,2)are close, and seem near to true values. There is hardly any difference in minimum

values of negative log-likelihood functions with respect to BC, NP and MNP families.
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Table 4. Example on behaviors of power parameter estimates and the other parameter estimates in BC, NP

and MNP families for the four-sample case.

BB | B ):g(‘ 7 W, WV, W, Ratio| & [ ,é(,NP ﬁ.w ,ésNP ):MM’ Syne ,‘%WP ,é,Mw ,'%MW MinBCMinNPMinMM

0 | 0 {-2.22274{1.17E-06/0.450]2.55E-172.55E-17/0.0844/-0.1814/0.0817|5.0202.57E-07|-8E-07|-2.222(0.0844(5.034/-3.5E-05-2.3E-05| 128.25|128.25| 128.2:
0.10.2[-0.43976| 0.00888 2.026{ 0.0102 | 0.0204 |0.0869|-0.1814{0.0817|5.020| 0.1000 0.2000/-2.222/0.0844(5.034| 0.1000 | 0.2000 {133.49|133.05| 133.0:
0.2/0.4[-0.09743|0.05192 (3.985| 0.1189 | 0.2377 |0.0873]-0.1814{0.0817|5.020| 0.2000 |0.4000}-2.222/0.0844/5.034| 0.2000 | 0.4000 |138.37|137.85| 137.8:
0.3/0.6[-0.03126| 0.07363 |4.666| 0.2527 | 0.5054 |0.0874{-0.1814{0.0817|5.020| 0.3000 |0.6000}-2.222/0.0844/5.034| 0.3000 | 0.6000 |143.19|142.65| 142.6:
0.4/0.8]-0.01249| 0.08148 |4.888| 0.3728 | 0.7456 |0.0874{-0.1814{0.0817|5.020| 0.4000 |0.8000|-2.224/0.0844/5.034| 0.4000 | 0.8000 |147.99|147.45| 147.4:
0.5 1 |-0.00581|0.08455 |4.970| 0.4835 | 0.9669 |0.0874{-0.1814{0.0817|5.020| 0.5000 |1.0000}-2.222/0.0844/5.034| 0.5000 | 1.0000 |152.79|152.25| 152.2:
0.6/1.2(-0.00302| 0.08588 [5.005| 0.5893 | 1.1787 |0.0874-0.1814{0.0817|5.020| 0.6000 |1.2000-2.222/0.0844(5.034| 0.6000 | 1.2000 [157.59|157.05| 157.0:
0.7|1.4/-0.00171{ 0.08653 |5.021| 0.6927 | 1.3855 |0.0874{-0.1814{0.0817|5.020| 0.7000 |1.4000}-2.222/0.0844/5.034| 0.7000 | 1.4000 |162.39|161.85| 161.8:
0.8]1.6[-0.00104{ 0.08687 [5.030| 0.7948 | 1.5896 |0.0874{-0.1814{0.0817|5.020| 0.8000 |1.6000}-2.222/0.0844/5.034| 0.8000 | 1.6000 |167.20|166.65| 166.6:
0.9/1.8-0.00066| 0.08707 [5.035| 0.8962 | 1.7924 |0.0874{-0.1814{0.0817|5.020| 0.9000 |1.8000}-2.222/0.0844/5.034| 0.9000 | 1.8000 [172.00|171.45| 171.4:
1 -0.00044{0.08719(5.037| 0.9971 | 1.9943 |0.0874{-0.1814{0.0816|5.020| 1.0000 [2.0000{-2.222/0.0844/5.034| 1.0000 | 2.0000 [176.80|176.25| 176.2:

[V KV KV KVAR RV KV KV KV RV RV KV

[N

4 ;
(Note: The true densities are ] 1GF(5’ o,1; )”’ withn, =n, =n, =n, =8,6§ =-0.3, o=0.1,

i=

= exp(ﬂo): 7, :exp(ﬂo +:81)9773 = exp(ﬂo +ﬂ2)a’74 :exp(ﬂo +5 +ﬁ2)9 By=5, B, =0.1xIndex,

n;

. 4
B, =0.2x Index (Index=0,1,2,---,10). As forestimates{)i,r",y?o,gﬁl,z/}z} ofI I ) IBC(/LT,é) , we put
ie

e e . 4 A a2 s "2
S =0, & =Vo+V1, &=V +Vs, & =y +y +y, and Ratio=7/ Zi:1ni (1+QBC6E1') /Zizlni
MinBC, MinNP and MinMNP mean the minimum values of negative log-likelihood functions with respect
to BC, NP and MNP families respectively.)

2. Three-factor design: Revisited example
Variations of signs in estimates of power parameters appeared in Example 1 (Isogai [3]), where an estimate
Apc of A inBC family (5) had an opposite sign compared to an estimate 5 in NP family (2). This
data is given by Box and Cox [1] (p.223), and we reanalyze it in our setting.

The data set comes from 3° factorial experiment on three factors: length of test specimen (denoted by
A), amplitude of loading cycle (denoted by B) and load (denoted by C). Three factors A, B and C have

three levels denoted by A;, B; and C, (i,j,k =1,2,3). The response variable Y, (i, .,k =1,2,3) is the

ik

number of cycles to failure of worsted yarn, and is supposed to be distributed as GF (5 et/ ) .

By using NP(é',O',n[jk) , BC(/l,r,fl»jk) and MNP (ﬂ,a,f]ijk) (i,j,k=1,2,3), we consider regression

analyses on the data. We suppose that log#;; and &y have linear structures with main effects (denoted

bya;, pjandy, for i, j, k =1, 2, 3), a constant term (denoted by #) and no interaction. That is,
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logn, =pu+a;+p,+y,and &y =u+a,+f,+7,.
To remove any redundancy of parameters, we assume that parameters corresponding to the third

levels are equal to zero: a3 =0, f3=0,73=0.

To examine the behavior of iBC with respect to BC(i,T,(f,jk) (i,/,k=1,2,3) under scale

transformations of Y — Y / {19,,0 iG] k} (Q >0,p,>0,¢, > 0) , we consider the following case

1 (i=12)

6, , p =1(j=123) and ¢, =1 (k=1,2,3),
" |exp(Index) (i=3) Pj (J ) and ¢, ( )

where Index takes integer values from -10 to 10.

Table 5. Results on regression analyses for the number of cycles to failure data with respect to NP

(5,0,77ijk),BC(/l,r,§jk) andMNP(/l,O'J]l-jk) withlogn,, =pu+a,+ B, +y, and &, =u+o,+ B, +y,

(i,/,k=1,2,3) under scale transformations Y, — Y, /6,,where 6, =1 (i=1,2)and 6, =exp(Index)

R n 2 1/2 A A
(Index =-10,-9,---,9,10) . Ratio:r/{f (1+/13C ]k) /27} with & =i+, +p,+7,

i,j.k=1

(i,),k=1,2,3).

Index | Age

. 5~ BC 5 BC 5BC _ ~BC ABC RBC ~BC ~BC 2 5 HNP 4 NP NP _ 4NP NP
Ratio | & a, |a —a, VA 1 N 72 o Onp a a, @ -4 | B

N

-10 |-0.0207 0.1201 | 0.1451 |-9.2505|-8.4386 | -0.8119 | 1.0317 | 0.5205 | 0.6382 | 0.3672 | 0.3301 | 0.1180 |-11.8095|-10.9057| -0.9038 | 1.2598

-9 [-0.0227| 0.1188 | 0.1452 |-8.3639 |-7.5615 | -0.8024 | 1.0198 | 0.5148 | 0.6308 | 0.3631 | 0.3333 | 0.1174 |-10.8108|-9.9071 | -0.9038 | 1.2598

-8 [-0.0251|0.1172 | 0.1453 |-7.4800 |-6.6889 | -0.7912 | 1.0058 | 0.5080 | 0.6222 | 0.3582 | 0.3333 | 0.1174 |-9.8109 | -8.9071 | -0.9038 | 1.2598

-7 ]-0.0280| 0.1153 | 0.1454 |-6.5970|-5.8195 | -0.7775 | 0.9886 | 0.4998 | 0.6116 | 0.3523 | 0.3333 | 0.1174 | -8.8108 | -7.9071 | -0.9038 | 1.2597

-6 |-0.0317|0.1130 | 0.1455 |-5.7190|-4.9583 | -0.7607 | 0.9679 | 0.4897 | 0.5988 | 0.3451 | 0.3333 | 0.1174 |-7.8109 | -6.9071 | -0.9038 | 1.2598

-5 [-0.0365|0.1101 | 0.1458 |-4.8432(-4.1038 | -0.7394 | 0.9414 | 0.4769 | 0.5825 | 0.3360 | 0.3333 | 0.1173 |-6.8107 | -5.9069 | -0.9038 | 1.2597

-4 [-0.0429| 0.1063 | 0.1461 |-3.9751|-3.2632| -0.7120 | 0.9074 | 0.4603 | 0.5616 | 0.3243 | 0.3333 | 0.1174 |-5.8109 | -4.9071 | -0.9038 | 1.2597

-3 [-0.0518|0.1014 | 0.1466 |-3.1191|-2.4437 | -0.6754 | 0.8624 | 0.4383 | 0.5339 | 0.3088 | 0.3333 | 0.1174 |-4.8109 | -3.9071 | -0.9038 | 1.2597

-2 [-0.0647|0.0949 | 0.1476 |-2.2881 |-1.6622 | -0.6259 | 0.8020 | 0.4085 | 0.4967 | 0.2880 | 0.3333 | 0.1174 |-3.8108 | -2.9070 | -0.9038 | 1.2598

-1 [-0.0834| 0.0867 | 0.1496 |-1.5118|-0.9513 | -0.5605 | 0.7238 | 0.3694 | 0.4488 | 0.2614 | 0.3333 | 0.1174 |-2.8109 | -1.9071 | -0.9038 | 1.2598

0 |-0.1006| 0.0825 | 0.1547 |-0.8808 |-0.3744 | -0.5063 | 0.6675 | 0.3389 | 0.4149 | 0.2436 | 0.3333 | 0.1174 | -1.8108 | -0.9070 | -0.9038 | 1.2598

1 0.0072 | 0.1702 | 0.1630 {-0.6936 | 0.2643 | -0.9579 | 1.3173 | 0.6317 | 0.8193 | 0.4797 | 0.3333 | 0.1174 |-0.8108 | 0.0930 | -0.9037 | 1.2598

0.1362 | 0.3308 | 0.1510 | 0.6687 | 2.7365 | -2.0678 | 2.7320 | 1.2824 | 1.6905 | 0.9643 | 0.3333 | 0.1174 | 0.1891 | 1.0929 | -0.9038 | 1.2598

0.1031 | 0.2563 | 0.1460 | 2.1835 | 3.8802 | -1.6966 | 2.1854 | 1.0515 | 1.3513 | 0.7688 | 0.3333 | 0.1174 | 1.1891 | 2.0929 | -0.9038 | 1.2598

0.0756 | 0.2139 | 0.1447 | 3.2326 | 4.6722 | -1.4395 | 1.8392 | 0.8969 | 1.1370 | 0.6476 | 0.3333 | 0.1174 | 2.1891 | 3.0929 | -0.9038 | 1.2598

0.0585 | 0.1920 | 0.1443 | 4.1704 | 5.4706 | -1.3002 | 1.6558 | 0.8134 | 1.0236 | 0.5837 | 0.3333 | 0.1174 | 3.1891 | 4.0929 | -0.9038 | 1.2598

0.0474 | 0.1792 | 0.1442 | 5.0768 | 6.2935 | -1.2167 | 1.5472 | 0.7634 | 0.9565 | 0.5459 | 0.3333 | 0.1174 | 4.1891 | 5.0929 | -0.9038 | 1.2598

0.0397 | 0.1710 | 0.1441 | 5.9733 | 7.1356 | -1.1624 | 1.4769 | 0.7309 | 0.9130 | 0.5215 | 0.3333 | 0.1174 | 5.1891 | 6.0929 | -0.9038 | 1.2598

0.0341 | 0.1653 | 0.1441 | 6.8652 | 7.9894 | -1.1242 | 1.4278 | 0.7080 | 0.8827 | 0.5044 | 0.3333 | 0.1174 | 6.1891 | 7.0929 | -0.9038 | 1.2598

Clow|(wlalu|s|v|n

0.0299 | 0.1611 | 0.1441 | 7.7560 | 8.8523 | -1.0963 | 1.3920 | 0.6913 | 0.8605 | 0.4920 | 0.3333 | 0.1174 | 7.1891 | 8.0929 | -0.9038 | 1.2598
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Table 5. (Continued.)

AN S NP S NP A ~ MNP ~ MNP ~ MNP ~ MNP P P ~MNP ~ MNP . . .
Index| S)" 7 7 Awe | G a) a a™ - a) YA i 7 75 MinBCMinNPMinMNP|

-10 1 0.7228 | 0.7051 | 0.4049 | 3.6547 | 0.1269 | -11.8279 | -10.9257 | -0.9022 1.2606 0.7433 0.7025 0.4030 |247.54|248.78| 248.51
-9 1 0.7242 | 0.7048 | 0.4047 | 3.6611 | 0.1268 | -10.8280 | -9.9258 -0.9022 1.2607 0.7435 0.7025 0.4031 |238.55|239.76| 239.51
-8 | 0.7243 | 0.7047 | 0.4047 | 3.6542 | 0.1269 | -9.8277 | -8.9254 -0.9023 1.2607 0.7432 0.7023 0.4030 |229.57|230.76| 230.51
-7 1 0.7242 | 0.7048 | 0.4047 | 3.6613 | 0.1268 | -8.8280 | -7.9258 -0.9022 1.2607 0.7435 0.7025 0.4031 |220.59|221.76| 221.51
-6 | 0.7242 | 0.7048 | 0.4047 | 3.6613 | 0.1268 | -7.8280 | -6.9258 -0.9022 1.2607 0.7435 0.7025 0.4031 |211.62|212.76| 212.51
-5 1 0.7241 | 0.7048 | 0.4047 | 3.6615 | 0.1268 | -6.8280 | -5.9258 -0.9022 1.2606 0.7435 0.7025 0.4031 |202.66|203.76| 203.51
-4 1 0.7242 | 0.7048 | 0.4047 | 3.6609 | 0.1268 | -5.8280 | -4.9258 -0.9022 1.2607 0.7435 0.7025 0.4031 [193.72|194.76| 194.51
-3 [ 0.7242 | 0.7047 | 0.4047 | 3.6643 | 0.1267 | -4.8281 | -3.9259 -0.9022 1.2606 0.7435 0.7024 0.4030 |184.82|185.76| 185.51
-2 | 0.7241 | 0.7048 | 0.4047 | 3.6610 | 0.1268 | -3.8280 | -2.9258 -0.9022 1.2607 0.7435 0.7026 0.4031 [175.99|176.76| 176.51
0.7242 | 0.7048 | 0.4047 | 3.6613 | 0.1268 | -2.8280 | -1.9258 -0.9022 1.2607 0.7435 0.7025 0.4031 [167.34|167.76| 167.51

0 [0.7242 | 0.7048 | 0.4047 | 3.6476 | 0.1270 | -1.8277 | -0.9255 -0.9022 1.2606 0.7432 0.7026 | 0.4031 |159.18/158.76| 158.51
1 | 0.7241 | 0.7049 | 0.4047 | 3.6614 | 0.1268 | -0.8280 | 0.0742 -0.9022 1.2607 0.7435 0.7025 0.4031 |151.37|149.76| 149.51
2 | 0.7242 | 0.7048 | 0.4047 | 3.6617 | 0.1268 | 0.1720 1.0741 -0.9022 1.2607 0.7435 0.7025 0.4030 |140.64|140.76| 140.51
3 | 0.7242 | 0.7048 | 0.4047 | 3.6614 | 0.1268 | 1.1720 | 2.0742 -0.9022 1.2607 0.7435 0.7025 0.4031 |130.74|131.76| 131.51
4 10.7242 | 0.7048 | 0.4047 | 3.6612 | 0.1268 | 2.1720 | 3.0741 -0.9021 1.2606 0.7435 0.7026 | 0.4031 |121.49|122.76| 122.51
5 10.7242 | 0.7048 | 0.4047 | 3.6613 | 0.1268 | 3.1720 | 4.0742 -0.9022 1.2607 0.7435 0.7025 0.4031 |112.41|113.76| 113.51
6 | 0.7242 | 0.7048 | 0.4047 | 3.6611 | 0.1268 | 4.1721 5.0742 -0.9021 1.2607 0.7435 0.7025 0.4031 [103.38/104.76| 104.51
7 |0.7242 | 0.7048 | 0.4047 | 3.6608 | 0.1268 | 5.1720 | 6.0743 -0.9022 1.2607 0.7435 0.7026 | 0.4031 |94.37|95.76 | 95.51
8 | 0.7242 | 0.7048 | 0.4047 | 3.6614 | 0.1268 | 6.1720 | 7.0742 -0.9022 1.2607 0.7435 0.7025 0.4031 | 85.37 | 86.76 | 86.51
9 [0.7242 | 0.7048 | 0.4047 | 3.6613 | 0.1268 | 7.1720 8.0742 -0.9022 1.2607 0.7435 0.7025 0.4031 |76.37 | 77.76 | 77.51
10 | 0.7239 | 0.7048 | 0.4047 | 3.6612 | 0.1268 | 8.1720 | 9.0742 -0.9022 1.2607 0.7435 0.7025 0.4031 | 67.37 | 68.76 | 68.51

(Note: MinBC, MinNP and MinMNP mean the minimum values of negative log-likelihood functions with

respect to BC, NP and MNP families respectively.)

For the transformed data, we perform regression analyses on three families BC(&,T,@jk) ,

NP (5, O, ik ) and MNP (/1,0', ik ) . Results are given in Table 5, where estimates of a contrast «, — ¢, are
included. Clearly a change of 8, with respect to /ndex violates invariance of /{BC , and produces variations
of signs in }CBC . Small values of }CBC suggest that Logarithmic transformation is appropriate, but ﬂA,MNP is
entirely different from }:BC , and 5 indicates another transformation, that is, the Weibull distribution.

The other estimates with BC(&,T,@jk) change greatly according to &, . Furthermore, as for the estimate

~ BC A ~ NP ~ NP

BC . . ~ MNP ~ MNP
of contraste, —¢a,, &, —a, varies greatly according tog;, but &, —a, and @ -

a, are
invariant. Also, estimates corresponding to factors B and C with NP(&,O’, ﬂy-k) and MNP(é',O',r]l-jk)are

1/2

. 3 f s . P
invariant. The ratio 7/ Z (1+/7“BC‘§z'jk) /27 with &y =1+, + B +7, seems to be

i,jk=1

constant as expected.
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VI. Scale transformations and Tuning Design Matrices

A scale-invariant property of the maximum likelihood estimates 5 and 6 for the power parameter 6 and o of

NP family does not hold generally in the general regression situation, where there are continuous

explanatory variables in design matrices. However, we can examine behaviors of estimates & and 6 in a

different way. In this section we first show that effects of scale transformations with random variables can
be attained by tuning design matrices in the current regression problem.

We shall consider M populations GF(5, o,1; ) @i=1,---, M), where 6 and o are common, and log , has
a regression structure such as
logn, = B, + Pz, (i = 1,~~~,M)
with population parameters 3, , 3, (;t 0) and a continuous explanatory variable Z .

For BC families BC(/I,r,g‘l-) (i=1,--,M), we suppose the following linear regression structure

& =v,+yz (i:1,---,M)
with population parameters ¥/, and ¥/, . For NP, MNP families NP(é‘,o-,f],-) and MNP(5,J,77,—)

(i =1, ~,M) , we suppose the same regression structure ofGF((?, o, 77,»).

Here we note that under a scale transformation X, — 6.X, (6, >0) , 7], of GF(5,0,7; )is transformed

to @7, , from which we know that logn, —log(6n,)= 8, + Bz, (zl.* =z, +logb, /,B]). The effect of a

scale transformation X, — 6,X, is attained by tuning the value of our explanatory variable Z. In the
following example, instead of using scale transformations X, — 6, X, (i =1, .M ) , we vary the value
ofz, in logn, =f, + Bz (i=L-,M).

Every time we change z, inlogy, =8, + Bz, (i=L--,M), we draw M random samples of

sizes n; from GF(&,O',nl-) (i:1,~--,M) and examine behaviors of estimates {/{Bc,f,(ﬁo,(ﬁl} of

MBC(”“’Tsé')ni > {S’&NPf'IéONP’IéINP} of ].MINP(&U?Ui)ni and {’iMNPaOA-MNPuéoMNPagMNP}

i=1 i=
of Vl MNP (4,0,7;)" .
i

We give an example on regression analysis, and examine behaviors of Agc. Let us consider five

populations GF (5 ,0, 771-) (i = 1,2,3,4,5) , of which log 7; has a regression structure such as
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logn, 1 0.001
logn, 1 0.002
logn, |=|1|8,+ 0.003 B,
logn, 1 0.004
log 7, 1 0.005 x Index
By =5,6=05

with a proportional factor Index . The factor Index takes values {0, 50,100,200, 300,400,500} .

For the case =—0.3,0=0.1 and fixed Index , we draw (n+1)-quantiles of size n =6 from each of
GF (6,0.m;) (i=1,2,3,4,5).

According to each Index , using five samples from GF (5 ,O, 771-) (i = 1,2,3,4,5) mentioned above, we

5 i 5
perform regression analyses on families ) lNP(é', o, Ui) s ] lMNP(5 ,0,17; )"i and
= i=
n;
i=lBC(ﬂ.,r,§i) (nl =ny,=-=n,= 6) . Here we suppose that &; has a regression structure such as

& 1 0.001

& 1 0.002

E=11|w,+ 0.003 v, .

¢, 1 0.004

& 1 0.005 x Index

Results are given in Table 6.

Table 6. Example on behaviors of power parameter estimates and the other estimates in BC, NP and NMP

families for the case of tuning design matrices.

Index | Age ¢ v, v, 5 Sy B LAY | Awe | Swe | A™ | A | MinBC | MinNP |MinMNP

0 -2.142 |1.64E-06| 0.467 |1.04E-05| -0.165 | 0.0769 | 5.022 | 0.498 | -2.158 | 0.0790 | 5.034 0482 | 118.13 | 118.13 | 118.13
50 -1.187 | 0.0002 | 0.841 | 0.0012 | -0.165 | 0.0769 | 5.022 | 0.500 | -2.141 | 0.0790 | 5.034 0.500 | 119.06 | 118.88 | 118.88
100 -0.500 | 0.0064 | 1.840 | 0.0379 | -0.165 | 0.0769 | 5.022 | 0.500 | -2.142 | 0.0790 | 5.034 0.500 | 119.93 | 119.63 | 119.63
200 -0.147 | 0.0382 | 3.564 | 0.2304 | -0.165 | 0.0769 | 5.022 | 0.500 | -2.143 | 0.0790 | 5.034 0.500 | 121.49 | 121.13 | 121.13
300 -0.067 | 0.0574 | 4.281 | 0.3485 | -0.165 | 0.0769 | 5.022 | 0.500 | -2.140 | 0.0790 | 5.034 0.500 | 123.00 | 122.63 | 122.63
400 -0.038 | 0.0666 | 4.591 | 0.4057 | -0.165 | 0.0769 | 5.022 | 0.500 | -2.145 | 0.0790 | 5.034 0.500 | 124.51 | 124.13 | 124.13
500 -0.024 | 0.0714 | 4.746 | 0.4360 | -0.165 | 0.0769 | 5.022 | 0.500 | -2.142 | 0.0790 | 5.034 0.500 | 126.01 | 125.63 | 125.63

5 n;
(Note: The true densities are ] 1GF(5,0‘,77,») withn =n, = =n,=6,0=-03,0=0.1,
i=

logn, = B, + Bz (i = 1,2,---,5),ﬂ0 =5, =0.5, (21,22,23,24,25) = (0.001,0.002,0.003,0.004,0.005 X Index)

n;

5
(Index =0,50,100,200,300,400,500) , and &, =y, +y,z, (i=1,2,--,5) for | | ]BC(ﬂ,z’,éj) )

i=
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Clearly a change of Index causes large fluctuations of /iBC . Values of /iBC corresponding to large Index

suggest that Logarithmic transformation is appropriate. Estimates 7 and 7, are seriously unstable. On the
other hand, ﬁONP and /}1 NP seem to be stable.

An implication of this example is serious, because this example shows that a change of design
matrices in regression analysis brings entirely different estimation results with respect to BC family. On the
other hand, NP and MNP families always produce stable estimation results regardless of a change of design

matrices.

VII. Conclusions

Through many concrete examples we have examined behaviors of the maximum likelihood estimate p) BC
for the power parameter A of the Box-Cox power normal family under scale transformations of the relevant
random variables. Our summary is as follows.

(1) One-sample problem. The maximum likelihood estimate p) gc 18 invariant under a scale transformation
of the random variable. However, there is some functional relationship among parameters, including 4 , of
the Box-Cox power normal family, which causes not only large fluctuations of the other estimates except
for A gc but also a large prediction error with BC family in the meaning of bootstrap generalized
information criteria.

(2) Two-sample problem. The maximum likelihood estimate p) gc 18 not invariant under individual scale
transformations of each random variable. A tendency of Logarithmic transformation in the Box-Cox power
normal family often appears when there are large differences between variances of two populations.

(3) Multi-sample problem, especially, multifactor designs. The maximum likelihood estimate p) gc 1s not
invariant under individual scale transformations of each random variable. Estimates of parameters,
including 4 , of the Box-Cox power normal family move violently under the above scale transformations.
(4) The general regression situation. Changing a design matrix causes large fluctuations of estimates
of A and the other parameters in the Box-Cox power normal family. An implication of this result is serious,
because it means that alterations to a design matrix bring us entirely different estimates under the same

experimental situation.

On the other hand, the maximum likelihood estimates & and & for § and o of our new power normal family
are invariant under scale transformations of the relevant random variables in cases of one-sample,

two-sample and multi-sample problems.
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In the general regression situation changes of a design matrix do not give any critical effect to

estimate & and & of our new power normal family. Estimates 5 and & seem to be stable.

Both parameters & and o have a direct relationship A = & / o for the power parameter A of the Box-Cox
power normal family. Thus, when we are interested in A of the Box-Cox power normal family, our modified
new power normal family is useful to estimate A , because the maximum likelihood estimate  y;p for the
power parameter A of our modified new power normal family is invariant under scale transformations of the
relevant random variables in cases of one-sample, two-sample and multi-sample problems. In the general

regression situation A4 yyp also remains stable under alterations to a design matrix in the same experiment.
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