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Examination of Transformations to Normality 
 

Takafumi Isogai＊ 

 
The idea of an R(x) plot in Tarter and Kowalski (1970), which is defined by the ratio of densities with a 

non-normal distribution and a normal, is developed to examine several problems in normalizing 

transformation theory.  A particular structure of the function R(x) enables us to introduce a new diagnostic 

method for the existence problem of a transformation independent of the population parameter (see Efron 

(1982)).  Performance and sensitivity of three diagnostic methods, including the Efron’s method, are 

examined by several examples. It is shown that our new method has the most stable performance among 

three methods.  
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Ⅰ．Introduction 

To transform non-normal data sets to normality often makes us get more understanding and easier 

interpretation of the original data sets.  Let Z be a random variable distributed as a normal and let X be a 

random variable distributed as another distribution.  Let us consider the relationship Z=T(X), where T 

denotes the transformation to normality.  Basically there are two currents in normalizing transformation 

theory.  One is to construct a transformation family of Z systematically through given T (for example, 

Box and Cox (1964), Johnson (1949) and Isogai (1999, 2005)) and the other is to find a transformation T 

for a given distribution of X (for example, Wilson and Hilferty (1931)). 

In reference to the second standpoint, Tarter and Kowalski (1970) proposed an R(x) 

 ( 1 / 1 / )dz dT
dx dx

= =  plotting method to detect the functional form of a transformation T.  Also, Kaskey, 

Kolman, Steinberg and Krishnaiah (1980) considered the problem of transforming Pearson type 

distributions to normality by using a 2nd order differential equation, of which solution curve defines a 

transformation T, and they evaluated the transformation function T numerically by Runge-Kutta algorithm.  

On the other hand, for one-parameter families Efron (1982) has considered the existence problem of a 

transformation T independent of the original parameter and also has given a diagnostic tool for the 

existence of T. 

Our objective here is to develop the idea of the R(x) plotting method (see Tarter and Kowalski (1970)) 
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by use of the numerical approach provided by Kaskey et al. (1980), and to discuss several uses of R(x): a 

detective use and derivation of a diagnostic tool in the meaning of Efron (1982).  

Thus the organization of the paper is as follows.  In Section 2 we shall briefly review the numerical 

method provided by Kaskey et al. (1980).  In Section 3 the Efron’s (1982) diagnostic method is discussed.  

A particular factorization of the function R(x) derives a new diagnostic tool.  It is shown that two 

diagnostic methods are equivalent, but they have different aspects for diagnostics.  A generalization of the 

diagnostic methods to a multiparameter case is also considered.  Finally, in Section 4, performance and 

sensitivity of our new method are examined and compared to the Efron’s method by several examples.  

 

Ⅱ．Transformation and a differential equation 

Let ( )F xθ be a distribution function having the density ( )f xθ which is positive in some interval [L, 

U] and zero outside of this interval, and continuously differentiable with respect to x andθ .  Suppose that 

the end points L and U do not depend onθ .  Let ( )zΦ be the standard normal distribution function with 

the density ( )zφ .  The transformation function z = T(x) is defined by 

( ) ( )( )1z T x F xθ
−= = Φ           (1) 

or equivalently defined by 

          ( ) ( )
z x

L
u du f t dtθφ

−∞
=∫ ∫ . 

Differentiating the equation (1) twice with respect to x, we get the following 2nd order differential 

equation 

          ( ) ( )2 logz z z f x z
x θ
∂⎧ ⎫= + ⎨ ⎬∂⎩ ⎭

&& & &          (2) 

where we put 

          2

2

,dz z
dx
d z z
dx

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

&

&&

 . 

The transformation function z = T(x) is given as a solution z = z(x) of the equation (2) with suitable 

initial conditions.  We shall take medians of both distributions ( )zΦ and ( )F xθ as initial conditions of (2), 

which are given by 

          
( )

( ) ( )
0.5

0.5 0.5

0,

2

z x

z x f xθπ

=⎧⎪
⎨

=⎪⎩ &
           (3) 
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where 100α ( )0 1α< < percent points zα and xα are defined by 

          
( )
( )

,z

F x
α

θ α

α

α

Φ =

=
 

and the solution z = z(x) of (2) satisfies the relationship: 

          ( )z x zα α= . 

Note that the numerical solution z = z(x) is evaluated over the interval 0.001 0.999[ , ]x x . 

Figure 1 shows the numerical solution z = T(x) for F distribution with (3, 6) degrees of freedom.  

Figure 1 also shows an R(x) plot for the F distribution.  Its almost linear configuration ( )R x x≈ indicates 

that a log transformation is appropriate as a normalizing transformation in this case.  

 

 

 

 

 

 

 

 

 

 

Figure 1.  Transformation function z = T(x) and R(x) plot for F(3, 6). 

 

Ⅲ．Diagnostics for the existence of a normalizing transformation 

Efron (1982) considered the existence problem of a transformation function z = T(x) which can be 

expressed as 

          
( )( , ) g xz z x θ

θ

νθ
σ
−

= =           (4) 

with some function g(x) independent of the population parameterθ .  Here θν is the median of g(x) and 

θσ the standard deviation of g(x). 

If such a function g(x) exists, then the relationship (4) can be written as 

          ( , ) ( )z x g xθ θν σ θ+ =           (5) 

and after differentiation of both sides with respect toθ , the equation (5) becomes 
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d d
d dz z

θ θ

θ
θ θ

σ ν
θ θ
σ σ

∂ = − −           (6) 

where we put 

          
z zθθ
∂

= ∂
∂

. 

Using the initial conditions (3) to eliminate the constant term in (6), we have 

          
( )0.5

1

d
z d zdz x

d

θ
θ

θ
θ

σ
θ

ν
θ

∂
= +

∂
.          (7) 

The Efron’s (1982) diagnostic method consists in plotting z versus ( )0.5/z z xθ θ∂ ∂ .  The linearity of 

this graph means the existence of a function g(x) independent ofθ .  Here we should remark that if

( )0.5 0z xθ∂ = , we cannot use the Efron’s method.  We have to modify the Efron’s method and evaluate 

          ( )0.5

d
dz z x z

θ

θ θ
θ

σ
θ
σ

∂ − ∂ = − .         (8) 

The linearity of the graph ( )( )0.5,z z z xθ θ∂ − ∂ means the existence of a function g(x) independent ofθ . 

 

1．Diagnostics for ż 

Tarter and Kowalski (1972) considered the problem of finding a normal transformation function z = 

T(x) through examination of a functional form of ( )/z dz dx=& (actually they used its reciprocal 

( ) 1/R x z= & ).  From their results the functional form of z& is generally expressed as 

          ( ),z h x θ=&             (9) 

where a functional form of h is written in terms of polynomials or elementary functions. 

Our objective here is to check the structure of dependency of ( ),h x θ on the original parameterθ . 

Now suppose that ( ),h x θ is divided into two factors θα and h(x), and that z& is expressed as 

          ( )z h xθα=&   0θα > , ( ) 0h x >          (10) 

where θα is a function of onlyθ and h(x) is a function of only x. 

If the relationship (10) is true, the transformation function is obtained as 

         ( ) ( )
0.5

x

x
z T x h u duθα= = ∫  

which is equivalent to the form of (4).  Thus we may put ( ) ( )h x g x= & and 1/θ θα σ= in (10). 

To diagnose the existence of such a function h(x), we differentiate both sides of (10) with respect to 
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θ .  Then we have 

          

d
z d

z

θ
θ

θ

σ
θ
σ

∂
= −

&

&
.            (11) 

The constancy of the graph , zz
z
θ∂⎛ ⎞

⎜ ⎟
⎝ ⎠

&

&
means the existence of a function h(x). 

Furthermore, substitution of (11) into (6) leads to 

          

d
z dz z

z

θ
θ

θ
θ

ν
θ
σ

∂
∂ − = −

&

&
          (12) 

which gives us a supplementary graph , zz z z
z
θ

θ
∂⎛ ⎞∂ −⎜ ⎟

⎝ ⎠

&

&
.  This plotting should be constant under our 

assumption. 

After all, our method is related to that of Efron (1982).  While the Efron’s method examines the 

linearity between z and zθ∂ in the relationship (6), our approach focuses on the examination of the slope 

coefficient as well as the intercept term in the equation (6).  

 

2．Multiparameter case 

Even when the population parameterθ of ( )F xθ is a p-dimensional vector ( )1 2, , , pθ θ θ′ =θ L , the 

preceding discussion goes through straightforwardly. 

The Efron’s method is to plot 

          
( )0.5

, i

i

zz
z x

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

, 1, ,i p= L  

where we put 

          i
i

z z
θ
∂

= ∂
∂

, 1, ,i p= L . 

Similarly, the modified Efron’s method is to plot 

          ( )( )0.5, i iz z z x∂ − ∂ , 1, ,i p= L . 

The linearity of all configurations in each graphical display means the existence of a function g(x) 

independent of the multiparameter ( )1 2, , , pθ θ θ′ =θ L . 

Our new diagnostic method is to plot 

          , i zz
z
∂⎛ ⎞

⎜ ⎟
⎝ ⎠

&

&
, 1, ,i p= L  
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and the supplementary diagnostic method is to plot 

          , i
i

zz z z
z
∂⎛ ⎞∂ −⎜ ⎟

⎝ ⎠

&

&
, 1, ,i p= L . 

The constancy of all configurations means the existence of a function h(x) independent of the 

multiparameterθ , which suggests indirectly the existence of a function g(x) independent ofθ . 

 

3．Another differential equation 

To use diagnostic methods mentioned above, we need the numerical calculation of /z θ∂ ∂ and

/z θ∂ ∂& .  These terms satisfy the following differential equation. 

The differentiation of both sides of the equation (2) with respect toθ leads to 

          ( ) ( ) ( )2 2 log logz z z zz z z f x f x z
x xθ θθ θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

&& & &
& & & .  (13) 

Our required solution ( ), /z z θ∂ ∂ is obtained as the solution of the simultaneous differential equation 

composed of (2) and (13) with suitable initial conditions.  In addition to (3), the initial conditions we need 

for the equation (13) are 

          ( ) ( )0.5

0.5 2
x

L
z x f x dxθ θ θπ∂ = ∂∫  and ( ) ( )0.5 0.52z x f xθ θ θπ∂ = ∂& .   (14) 

For a multiparameter case we have only to replace the differential operator ( )/θ θ∂ = ∂ ∂ in (13) and 

(14) by ( )/i iθ∂ = ∂ ∂ , 1, ,i p= L . 

 

Ⅳ．Examples 

In this section we shall examine performance of three diagnostic methods, that is, the Efron’s method, 

the modified Efron’s method and our new method through concrete statistical models. 

 

1．Log-normal distribution 

First we shall consider a typical case, where there exists a transformation function g(x) independent of 

population parameters. One of such distributions is the Log-normal distribution ( )2,LN μ σ .  Put

( ),μ σ′ =θ .  The distribution function and its density of ( )2,LN μ σ is respectively given by 

         
log( ) xF x μ

σ
−⎛ ⎞= Φ ⎜ ⎟

⎝ ⎠
θ  and ( ) ( )

2

log1 exp
22

x
f x

x
μ

σπσ
−⎧ ⎫

= −⎨ ⎬
⎩ ⎭

θ . 

Figure 2 gives an R(x) plot and a solution curve z = T(x) for 0μ = and 1σ = . Clearly, R(x) is nearly 

equal to x. 
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Figure 2.  R(x) plot and the solution curve z=T(x) for ( )2,LN μ σ with 0μ = and 1σ = . 

 

Figure 3 shows diagnostic plots of the Efron’s and our new methods with respect to μ . Constancy of 

both curves means that there exists a transformation function g(x) independent of μ . In Figure 3 the curve 

of our modified Efron’s method coincides with that of our new method.   

Furthermore, Figure 4 gives diagnostic plots of the modified Efron’s and our new methods with 

respect toσ . In this case we cannot use the Efron’s method, because ( )0.5 0z xσ∂ = for any μ andσ of 

( )2,LN μ σ .  Linearity of the modified Efron’s plot and constancy of our new diagnostic plot mean that 

there exists a transformation function g(x) independent ofσ .  After all, there exists a transformation 

function g(x) = log(x) independent of μ  and σ . 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Diagnostic plots of Efron’s and our new methods with respect to μ  
of ( )2,LN μ σ  in case of 0μ = and 1σ =  
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Figure 4.  Diagnostic plots of modified Efron’s and our new methods with respect toσ  

of ( )2,LN μ σ  in case of 0μ = and 1σ = . 

 

2．Student’s t distribution 

Next we shall consider a typical symmetric non-normal distribution, that is, Student’s t distribution 

denoted by ( )t θ , where ( )0θ > means the degrees of freedom. The density of ( )t θ is given by 

         ( )
1

2 2

1
1 2 1

2

xf x

θ

θ

θ

θ θθπ

+
−

+⎛ ⎞Γ⎜ ⎟ ⎛ ⎞⎝ ⎠= +⎜ ⎟⎛ ⎞ ⎝ ⎠Γ⎜ ⎟
⎝ ⎠

. 

Figure 5 displays an R(x) plot and a solution curve z = T(x) of (4)t . R(x) may be approximated by 

some concave function. Here we do not go further into this subject. 
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Figure 5.  R(x) plot and the solution curve z = T(x) for (4)t . 

 

We cannot use the Efron’s method, because ( )0.5 0z xθ∂ = for anyθ of ( )t θ . Figure 6 shows three 

plots of the modified Efron’s method for (1)t , (4)t and (10)t . Even whenθ becomes large, it is difficult 

for us to discriminate the degree of linearity among three plots. There is similar tendency in all plots. 

 

 

 

 

 

 

 

 

 

 
Figure 6.  The modified Efron’s plots for (1)t , (4)t and (10)t . 

 

Figure 7 displays three plots of our new method for (1)t , (4)t and (10)t .  Clearly the degree of 

constancy increases asθ becomes large.  It seems that our new method works well. 
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Figure 7.  Plots of our new method for (1)t , (4)t and (10)t . 

 

3．Distribution of sample correlation coefficient 

For a random sample of size n from a bivariate normal distribution, the density of the sample 

correlation coefficient ρ̂ (= X, say) is given by 

( ) ( )( ) ( )( )

( ) ( )

1 /2 4 /22 2

2 1
3/2

2 1 1 1 1 1 1( ) , , ;
1 1 2 2 2 22 1 , 1
2 2

n n

n

n x xf x F n
n B n x

θ

θ θ

θ

− −

−

− − − +⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎝ ⎠− − −⎜ ⎟
⎝ ⎠

, 

where we put θ ρ= (the population correlation coefficient, 1 1ρ− < < ) and ( )2 1F L is the Gauss 

hypergeometric function (see Johnson, Kotz and Balakrishnan (1995), p.549). 

 

     

 

 

 

 

 

 

 

 

 

 

Figure 8.  R(x) plots and solution curves z = z(x) in two cases of n=5 (solid line) and  

      n=15 (dashed line) withθ = 0 ( )0ρ = for the sample correlation coefficient.  
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Figure 8 shows R(x) plots and solution curves z = z(x) for two cases of sample sizes n=5 and n=15 

with the population parameterθ = 0 ( )0ρ = . Clearly convexity of R(x) plot and an anti-S-shaped 

configuration of the solution curve z = z(x) for n=5 indicate large deviation from normality, but constancy 

of R(x) plot and linearity of solution curve z = z(x) for n=15 suggest that the distribution of X (= ρ̂ ) is 

close to normal. 

 

 

 

     

 

 

 

 

 

Figure 9.  Plots of the Efron’s method in four cases: (1) 0θ = , n=15 (solid line), 

                    (2) 0.9θ = , n=15 (short dashed line), (3) 0θ = , n=5 (dashed-dotted line),  

                    (4) 0.9θ = , n=5 (long dashed line) for the sample correlation coefficient.   

 

Figure 9 displays plots of the Efron’s method in cases of 0θ = and 0.9θ = for n=5 and n=15. Strange 

behaviors of plots appear in Figure 9. Configurations of plots in cases of 0θ = and 0.9θ = for n=15 are 

overlapping. The case 0θ = (n=15) is close to normal, but the other case 0.9θ = (n=15) is extremely 

negatively-skewed non-normal one. The Efron’s method cannot distinguish these cases. Performance and 

sensitivity of the Efron’s method may decrease as sample sizes become large.  

 

 

 

 

 

 

 

 

 

 
Figure 10.  Plots of the modified Efron’s method in four cases: (1) 0θ = , n=15 (solid line), 

(2) 0.9θ = , n=15 (short dashed line), (3) 0θ = , n=5 (dashed-dotted line),  

(4) 0.9θ = , n=5 (long dashed line) for the sample correlation coefficient.   
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Figure 11.  Plots of our new method in four cases: (1) 0θ = , n=15 (solid line), 

                      (2) 0.9θ = , n=15 (short dashed line), (3) 0θ = , n=5 (dashed-dotted line),  

                      (4) 0.9θ = , n=5 (long dashed line) for the sample correlation coefficient.  

 

Figures 10 and 11 give plots of the modified Efron’s and our new methods in cases of 0θ =  and

0.9θ = for n=5 and n=15. Concerning those methods, sensitivity for non-normality increases as θ

becomes large, or as sample sizes decrease. The modified Efron’s and our new methods have good 

performance. 

 

V．Conclusions 

In the present paper we have examined and compared performance and sensitivity of the Efron’s, the 

modified Efron’s and our new methods by using some of typical non-normal distributions. Our conclusions 

are as follows: 

(1) The Efron’s method is sometimes unavailable due to ( )0.5 0z xθ∂ = , which leads us to introduce 

the modified Efron’s method. 

(2) Performance and sensitivity of the Efron’s method are less effective than the modified Efron’s and 

our new methods. 

(3) It is difficult for us to evaluate the degree of linearity in using the Efron’s and modified Efron’s 

methods.  

(4) Performance and sensitivity of our new method are the most stable among three methods. 
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