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Examination of Transformations to Normality: PartⅡ 

 
Takafumi Isogai* 

 
The idea of an R(x) plot in Tarter and Kowalski (1970), which is defined by the ratio of densities with a 

non-normal distribution and a normal, is developed to examine approximation problems in normalizing 

transformation theory.  A numerical method enables us to detect a functional form of R(x) easily, and to 

introduce several approximation formulas for R(x).  Performance of those approximation formulas is 

examined by several examples.  The accuracy of our approximations is shown to be fairly good. 
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Ⅰ．Introduction 

Let Z be a random variable distributed as a normal and let X be a random variable distributed as 

another distribution.  Let us consider the relationship Z=T(X), where T denotes a transformation function 

to normality.  Tarter and Kowalski (1970) proposed an R(x) ( 1 / 1 / )dz dT
dx dx

= =  plotting method to detect 

the functional form of a normalizing transformation T.  In this study, R(x) plots and normalizing 

transformation functions are examined by graphical representations for numerical solutions of appropriate 

2nd order differential equations proposed by Kaskey, Kolman, Steinberg and Krishnaiah (1980). 

For one-parameter families Efron (1982) considered the existence problem of a transformation T such 

that T(x) = ( )g xθ θα β+ , where θα and θβ are functions of the population parameterθ only, and g(x) is 

independent of the parameterθ .  At the same time he gave a diagnostic tool for the existence of such a 

function g(x).  Performance of the Efron’s diagnostic method has been examined and comparison with 

other diagnostic methods has been done in Isogai (2014).  The results suggest that in a general case a 

transformation T satisfying the above Efron’s assumption seldom exists. 

In the present paper we shall consider how to approximate a normalizing transformation T, when there 

does not exist a transformation T in the meaning of Efron (1982).  There are two approaches to deal with 

our problem.  One is to approximate a transformation function T directly by some heuristic function 

motivated by R(x) plots and graphical representations of solution curves.  The other approach is to 
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approximate R(x) itself.  

Thus the organization of the paper is as follows.  In Section 2 we shall briefly review the numerical 

method provided by Kaskey et al. (1980), and the Efron’s (1982) diagnostic method.  In Section 3 we 

show heuristic approaches through concrete examples of Cauchy and F distributions.  In Section 4 we try 

to approximate R(x) by some simple functions, and give several examples.   

 

Ⅱ．Review of a differential equation and diagnostic methods 

Let ( )F xθ be a distribution function having the density ( )f xθ which is positive in some interval [L, U] 

and zero outside of this interval, and continuously differentiable with respect to x andθ .  Suppose that the 

end points L and U do not depend onθ .  Let ( )zΦ be the standard normal distribution function with the 

density ( )zφ .  The transformation function z = T(x) is defined by 

          ( ) ( )( )1z T x F xθ
−= = Φ           (1) 

or equivalently defined by 

          ( ) ( )
z x

L
u du f t dtθφ

−∞
=∫ ∫ . 

Differentiating the equation (1) twice with respect to x, we get the following 2nd order differential 

equation 

          ( ) ( )2 logz z z f x z
x θ
∂⎧ ⎫= + ⎨ ⎬∂⎩ ⎭

&& & &          (2) 

where we put 

          
2

2

,dz z
dx
d z z
dx

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

&

&&

 . 

The transformation function z = T(x) is given as a solution z = z(x) of the equation (2) with suitable 

initial conditions.  We shall take medians of both distributions ( )zΦ and ( )F xθ as initial conditions of (2), 

which are given by 

          ( )
( ) ( )

0.5

0.5 0.5

0,

2

z x

z x f xθπ

=⎧⎪
⎨

=⎪⎩ &
           (3) 

where 100α ( )0 1α< < percent points zα and xα are defined by 

          ( )
( )

,z

F x
α

θ α

α

α

Φ =

=
 

and the solution z = z(x) of (2) satisfies the relationship: 

          ( )z x zα α= . 
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The numerical solution z = z(x) is obtained by the Runge-Kutta algorithm over the interval 0.001 0.999[ , ]x x . 

 

Efron (1982) considered the existence problem of a transformation function z = T(x) which can be 

expressed as 

          ( )( , ) g xz z x θ

θ

νθ
σ
−

= =           (4) 

with some function g(x) independent of the population parameterθ .  Here θν is the median of g(x) and 

θσ the standard deviation of g(x). 

The Efron’s diagnostic method for the existence of such a function g(x) is to plot 

          
( )0.5

, zz
z x
θ

θ

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

 

where we put 

          z zθθ
∂

= ∂
∂

. 

The linearity of this graph means the existence of a function g(x) independent ofθ . 

If ( )0.5 0z xθ∂ = , we have to modify the Efron’s diagnostic method.  The modified Efron’s method is 

to plot 

          ( )( )0.5,z z z xθ θ∂ − ∂ . 

The linearity of the graph ( )( )0.5,z z z xθ θ∂ − ∂ means the existence of a function g(x) independent ofθ . 

Our new diagnostic method proposed by Isogai (2014) is to plot 

          , zz
z
θ∂⎛ ⎞

⎜ ⎟
⎝ ⎠

&

&
. 

A constant tendency of the graph , zz
z
θ∂⎛ ⎞

⎜ ⎟
⎝ ⎠

&

&
means the existence of a function g(x) independent ofθ . 

Our new diagnostic method has the most stable performance among three diagnostic methods .  These 

three diagnostic methods are easily extended to a multi-parameter case where the population parameterθ

of ( )F xθ is a p-dimensional vector ( )1 2, , , pθ θ θ′ =θ L .  For the details, also see Isogai (2014). 

 

Ⅲ．Heuristic approximations for a normalizing transformation 

It happens that the Efron’s assumption does not hold, and that R(x) plots and graphical representations 

of solution curves z = T(x) do not give us much information about their functional forms. In such cases we 

have to seek a functional form of z = T(x) in a heuristic way.  In the following we give two examples of 

approaches.  The first one is a case for the standard Cauchy distribution, where we try to approximate z = 
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T(x) directly.  The second one is a case for F distributions, where there is some hypothetical function

( )g xθ such that ( )g xθ approximately satisfies ( ) ( ( ) ) /T x g xθ θ θν σ= − . 

 

1．Trial and error method for the standard Cauchy distribution 

Figure 1 shows the solution curve z = T(x) and the R(x) plot for the standard Cauchy distribution, 

which is also denoted by t(1), Student’s t distribution with one degree of freedom.  For the density of t(1), 

see the later equation (28).  By the method of trial and error, we have obtained an approximation function

ẑ for the transformation z = T(x) from the standard Cauchy to a normal distribution as 

          ( )( ){ }1.220
ˆ 1.370 ( ) log 1 log 1z sign x x= + +   for 0.001 0.999x x x≤ ≤ .   (5) 

Figure 2 shows the graph of ẑ against z and also shows the residual plotting of ẑ - z against z.  The 

degree of the difference ( ) ( )ẑ zΦ −Φ is less than 0.0055 for 0.001 0.999x x x≤ ≤ .   

Regarding a standard for the degree of our approximation, the precision is expressed as “not so bad”, 

“good” or “excellent”, according as the value of ( ) ( )ˆmax x z zΦ −Φ is equal to 0.025, 0.01 or 0.005. 

The above approximation is nearly “excellent”. 

  

 

Figure 1.  The solution curve z = T(x) of the standard Cauchy distribution. 
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Figure 2.  An approximation function ẑ (solid line) for the standard Cauchy distribution 

          and the residual ẑ - z (dashed line), where ( )( ){ }1.220
ˆ 1.370 ( ) log 1 log 1z sign x x= + + . 

 

2．Power transformation for F distributions  

Suppose that a random variable X is distributed as the central F distribution with ( )1 2,θ θ degrees of 

freedom (denoted by 1 2F( , )θ θ or 1

2
Fθ
θ in the following).  The density function of 1

2
Fθ
θ is 

          ( ) ( ) ( )

( )

1 1

1 2

/2 /2 1
1 2

/2

11 2

2

/
1 1, 12 2

F
xf x

B x

θ θ

θ θ

θ θ

θθ θ
θ

−

+
=

⎛ ⎞ ⎛ ⎞⎜ ⎟ +⎜ ⎟⎝ ⎠ ⎝ ⎠

, 0x > ,      (6) 

with 1 0θ > , 2 0θ > . 

 

 
Figure 3.  R(x) plot and the solution curve z = T(x) for F(4, 6). 
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Figure 4.  Three diagnostic plots for the upper parameter of F(4,6):  

Efron’s method (dashed-dotted line), Modified Efron’s method (dashed line),  

and our new method (solid line). 

 

Figure 3 shows the solution curve z = T(x) and the R(x) plot for F(4,6).  Figure 4 also shows three 

diagnostic plots with respect to the upper parameter 1θ of F(4,6).   

In Figure 4, non-linearity of Efron’s and modified Efron’s plots and non-constancy of our new method 

suggest the non-existence of a function g(x) that satisfies ( )( ) ( ) /z T x g x ν σ= = − θ θ and is independent of 

the population parameter ( )1 2,θ θ=θ . However, in Figure 3, an almost linear configuration of the R(x) plot 

and a monotone tendency of the solution curve z = T(x) indicate a possibility that z = T(x) can be 

approximated by ( )( ) ( ) /T x g x ν σ= −θ θ θ such that ( )( ) hg x x= θ
θ , where ( )h θ is a function of the population 

parameter ( )1 2,θ θ=θ . 

A functional form of ( )h θ is detected by a symmetrization principle (Wilson and Hilferty (1936)).  

The power parameter ( )h θ can be chosen so as to make the third order cumulant of the power transformed 

F variable ( )hX θ equal to zero.  We review briefly the results in Isogai (1999) and give several examples. 

A simple formula for ( )h θ is given by 

          1 2
1 2

1 2

1ˆ ˆ ( , )
3F Fh h θ θθ θ

θ θ
⎛ ⎞−

= = − ⎜ ⎟+⎝ ⎠
 for 1 2θ > , 2 2θ > .     (7) 

Also, a simple formula for the median ( )1

2
ˆ 0.5F θ
θ of 1

2
Fθ
θ is given by 
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          ( )1

2
1 2

2 1 1ˆ 0.5 exp
3

Fθ
θ θ θ

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 for 1 2θ > , 2 2θ > .     (8) 

Then, a simple formula for a normalizing transformation function ( )( ) ( ) /T x g x ν σ= −θ θ θ is obtained as 

          ( )
( ){ }

( )

1

2

ˆˆ

1/2
1 2

ˆ 0.5ˆˆ
ˆ 2 1/ 1 /

F
F

hh

F F

F

x F
z T x

h

θ
θ

θ θ

−
= =

+⎡ ⎤⎣ ⎦
 for 1 2θ > , 2 2θ > .    (9) 

 
Figure 5.  An approximation function ˆFz (solid line) for F(4,6) and  

the residual ˆFz z− (dashed line). 

 

Figure 5 shows the graph of ˆFz against z for F(4,6) and the residual plotting of ˆFz - z against z.  The 

effect of symmetrization about ˆFz is good.  Though the difference ˆFz - z seems large, the degree of the 

difference ( ) ( )ˆFz zΦ −Φ is less than 0.0185 for 0.001 0.999x x x≤ ≤ .  Our approximation ˆFz is “not so bad”.  

The degree of approximation about ˆFz increases as 1θ and 2θ become large (see Isogai (1999)). 

As an application of the power transformation for 1

2
Fθ
θ , we shall consider a family of Beta distributions.  

A beta random variable is defined by 

          ( )
( )

1

21

2 1

2

2
1 2

2
2 1 2

,
F

B
F

ψ
ψψ

ψ ψ
ψ

ψ

ψ ψ
=

+
          (10) 

where 1

2

2
2F ψ
ψ denotes a random variable distributed as the central F distribution with ( )1 22 ,2ψ ψ degrees of 

freedom.  The distribution of 1

2
Bψ
ψ is called as the standard Beta distribution with parameters 1ψ , 2ψ and 

denoted by 1 2Beta( , )ψ ψ .  The density function of 1 2Beta( , )ψ ψ is 
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          ( ) ( ) ( ) 21
11

1 2

1 1
,Bf x x x

B
ψψ

ψ ψ
−−= − , 0 1x≤ ≤ ,      (11) 

with 1 0ψ > , 2 0ψ > . 

Figure 6 shows the solution curve z = T(x) and the R(x) plot for Beta(2,3).  Figure 7 also shows three 

diagnostic plots with respect to the lower parameter 2ψ of Beta(2,3).   

 

 

Figure 6.  The solution curve z = T(x) and the R(x) plot for Beta(2,3). 

 

  Figure 7.  Three diagnostic plots for the lower parameter of Beta(2,3): 

Efron’s method (dashed-dotted line), Modified Efron’s method (dashed line),  

and our new method (solid line). 
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Clearly, in Figure 7, non-linearity of Efron’s and modified Efron’s plots and non-constancy of our new 

method suggest the non-existence of a function g(x) that satisfies ( )( ) ( ) /z T x g x ν σ= = − ψ ψ and is 

independent of the population parameter ( )1 2,ψ ψ=ψ .  However, using the relationship (10), we can 

construct simple formulas of symmetrizing transformation for 1 2Beta( , )ψ ψ through the results for the 

power transformation for 1

2

2
2F ψ
ψ . 

A simple formula for the median 1

2
ˆ (0.5)Bψ
ψ of 1 2Beta( , )ψ ψ is given by 

        ( )( )
( )( )

1

21

2 1

2

2 1
1 2 1

2
2 1 2

1 2
1 2

1expˆ 0.5 3ˆ (0.5) ˆ 1 10.5 exp exp
3 3

F
B

F

ψ
ψψ

ψ ψ
ψ

ψψ ψ
ψ ψ ψ ψ

ψ ψ

⎛ ⎞
−⎜ ⎟
⎝ ⎠= =

⎛ ⎞ ⎛ ⎞+ − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 1 1ψ > , 2 1ψ > .  (12) 

Also, a simple formula of a symmetrizing transformation for 1 2Beta( , )ψ ψ is given by 

        ( ) ( )( )
( )

1

2

ˆ
ˆ

22
2

1
1/2

1 2

0.5
1ˆˆ ( ) ˆ 1/ 1/

B

B

h
h

B B
B

x F
x

z T x
h

ψ
ψ

ψ
ψ

ψ ψ

⎛ ⎞
−⎜ ⎟−⎝ ⎠= =
+

        (13) 

where  

        ( ) 1 2
1 2

1 2

1ˆ ˆ 2 ,2
3B Fh h ψ ψψ ψ
ψ ψ
⎛ ⎞−

= = − ⎜ ⎟+⎝ ⎠
.         (14) 

Figure 8 shows the graph of ˆBz against z for Beta(2,3) and the residual plotting of ˆBz - z against z.  

The effect of symmetrization regarding ˆBz is good.  The degree of the difference ( ) ( )ˆBz zΦ −Φ is less 

than 0.0185 for 0.001 0.999x x x≤ ≤ .   

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 8.  An approximation function ˆBz (solid line) for Beta(2,3) and 
the residual ˆBz z− (dashed line). 
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As expected, the result of Figure 8 is the same as that of Figure 5.  The power transformation ˆBz for

1 2Beta( , )ψ ψ has the same performance as the power transformation ˆFz for 1

2

2
2F ψ
ψ .  For other useful 

applications of the power transformation for 1

2
Fθ
θ , see Isogai (1999, 2001, 2005). 

 

Ⅳ．Approximation method based on ż 

In this section we shall use an R(x) function to examine what type of functions approximate z& . Figures 

3 and 6 suggest that there is a possibility of approximating R(x) by the following function 

          [ ] ( )( ) ( )x h x γ θ
θη β= , 0θβ > , ( ) 0h x > ,        (15) 

where θβ and ( )γ θ are functions ofθ only, and h(x) is a given function of x only. 

Figure 1, including Figure 5 in Isogai (2014), also indicates that the same type of an approximation 

formula as above is useful, but it needs one more additional term in what follows: 

          ( ) ( ) ( ) ( )
0.5x R x h x

γ θ
θη β= + ⎡ ⎤⎣ ⎦ ,         (16) 

where h(x) ( )0≥ is symmetric about 0.5x and ( )0.5 0h x = .  

As for choices of h(x), we can use h(x) = x in Figure 3, ( )h x x= in Figure 1, ( ) (1 )h x x x= − in 

Figure 6 and ( ) ( )( ) 1 1h x x x= − + in Figure 8 of Isogai (2014). 

   

1．Estimation of functions βθ and γ(θ)  

First we shall consider approximating R(x) by ( )xη of (15).  Suppose that ( ) ( )R x xη= .  Then we 

have 

          [ ] ( )1 ( )h x
z

γ θ
θβ=&

.           (17) 

After taking logarithms of both sides of (17), differentiate it with respect to x.  We have 

          ( ) ( ) ( )log ( )
( ) ( )

z h x h xf x zz
z xh x h xθγ θ ∂⎛ ⎞= − = − +⎜ ⎟∂⎝ ⎠

&&
&

& &&
,      (18) 

where we have used (2) to derive the last term. 

Substitute x xα= into the last term of (18), where xα is the100α percentile of ( )F xθ .  Then we obtain 

an estimator of ( )γ θ : 

          ( ) ( ) ( ) ( )ˆ log ( )
( )x x

h xf x z x z x
x h x

α

α
θ α α

α

γ θ
=

⎛ ⎞∂
= − +⎜ ⎟⎜ ⎟∂⎝ ⎠

&
&

.      (19) 

Using ( )γ̂ θ of (19), from (17) we also obtain an estimator of θβ : 

          
( ) ( ) ( )ˆ

1ˆ
z x h x

θ γ θ
α α

β =
⎡ ⎤⎣ ⎦&

.          (20) 
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If we use the median 0.5x for x xα= in (19) and (20), we have simpler estimators 

          ( )
0.5

0.5

0.5

( )ˆ log ( )
( )x x

h xf x
x h xθγ θ

=

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂⎝ ⎠

&
,        (21) 

          ( )
( ) ( ) ( )ˆ

0.5 0.5

0ˆ
f x h x

θ γ θ
θ

φ
β =

⎡ ⎤⎣ ⎦

.         (22) 

Similarly, we shall consider approximating R(x) by ( )xη of (16). We have the following estimators of

( )γ θ and θβ : 

          ( )
( ) ( )

( ) ( )0.5

log ( )
( )ˆ

1 ( )
x x

f x z x z x
x h x

z x R x h x
α

θ α α
α

α α

γ θ =

∂
+

∂ ⎛ ⎞
= − ⎜ ⎟− ⎝ ⎠

&

&&
,      (23) 

          ( ) ( )
( ) ( )

0.5
ˆ

ˆ R x R x

h x
α

θ γ θ
α

β
−

=
⎡ ⎤⎣ ⎦

,          (24) 

where 0.5α ≠ .  In the following Example 3, we shall set 0.95α = and use 0.95x as xα in (23) and (24). 

Using the estimated θ̂β and ( )γ̂ θ , approximating formulas for the transformation z = T(x) are written 

as 

          ( ) ( )0.5

ˆˆ
ˆ

x

x

duz T x
uη

= = ∫  

            [ ]
( )

0.5

ˆ1 ( )ˆ
x

x
h u du

γ θ

θβ

−

= ∫   (from (15))        (25) 

            
( ) ( ) ( )

0.5
ˆ

0.5
ˆ

x

x

du

R x h u
γ θ

θβ
=

+ ⎡ ⎤⎣ ⎦
∫   (from (16)).      (26) 

 

2．Performance of approximation formulas 

To check the adequacy of the assumption ( ) ( )R x xη= about the model (15), we shall examine the ratio

( ) / ( )R x xη through a plotting 

          
[ ] ( )ˆ

( )( , )
ˆ ( )

R xz
h x γ θ

θβ
. 

A constant tendency around one of this plotting ensures our assumption.  We shall denote the function

ˆ( ) / ( )R x xη by B(x) in the following figures. 

 

Example 1．Beta distributions 

We shall consider Beta( 1ψ , 2ψ ), a family of Beta distributions. For Beta distributions we suppose that

( ) (1 )h x x x= − .  Figure 9 shows B(x) plots for Beta(2,3), Beta(6,9) and Beta(20,30).  The degree of a 
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constant tendency in B(x) plots increases as the parameters 1ψ and 2ψ become large. 

 

Figure 9. ( )ˆ( ) ( ) / ( )B x R x xη= plots for Beta distributions, Beta(2,3) (dashed-dotted line), 

Beta(6,9) (dashed line), and Beta(20,30) (solid line). 

 

To examine the degree of our approximation, we checked a difference between ẑ of (25) and z. Figure 

10 shows their residuals ẑ z− for Beta(2,3), Beta(6,9) and Beta(20,30). The degree of the difference

( ) ( )ẑ zΦ −Φ over 0.001 0.999x x x≤ ≤ is as follows. For Beta(2,3), ( ) ( )ˆ 0.004z zΦ −Φ ≤ .  For Beta(6,9),

( ) ( )ˆ 0.0015z zΦ −Φ ≤ . For Beta(20,30), ( ) ( )ˆ 0.0004z zΦ −Φ ≤ .  Our approximation is “excellent”. 

 

 

 

 

Figure 10.  Residual plots of ẑ z− for Beta distributions, Beta(2,3) (dashed-dotted line), 

Beta(6,9) (dashed line), and Beta(20,30) (solid line). 
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Example 2．Distributions of sample correlation coefficients 

For a random sample of size n from a bivariate normal distribution, the density of the sample 

correlation coefficient ρ̂ (= X, say) is given by 

( ) ( )( ) ( )( )

( ) ( )

1 /2 4 /22 2

2 1
3/2

2 1 1 1 1 1 1( ) , , ;
1 1 2 2 2 22 1 , 1
2 2

n n

n

n x xf x F n
n B n x

ρ

ρ ρ

ρ

− −

−

− − − +⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎝ ⎠− − −⎜ ⎟
⎝ ⎠

,   (27) 

where ρ ( 1 1)ρ− < < is the population correlation coefficient, and ( )2 1F L is the Gauss hypergeometric 

function (see Johnson, Kotz and Balakrishnan (1995), p.549).   

Figure 11 displays the solution curves z = T(x) and R(x) plots for the distributions of sample 

correlation coefficients with 0.1ρ = and 0.9ρ = in case of a sample size n = 5.  

 

 

             Figure 11.  Solution curves z = T(x) and R(x) plots for the distributions of 

                       correlation coefficients with 0.1ρ = and 0.9ρ = for n = 5. 

 

For distributions of sample correlation coefficients we suppose that ( ) ( )( ) 1 1h x x x= − + .  Figure 12 

shows B(x) plots for the distributions of sample correlation coefficients with 0.1ρ = in cases of sample 

sizes n = 5 and n = 15.  A constant tendency of a B(x) plot increases as a sample size becomes large. 
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      Figure 12.  ( )ˆ( ) ( ) / ( )B x R x xη= plots for the distributions of sample correlation  

coefficients with 0.1ρ = in cases of sample sizes n = 5 and n = 15. 

 

Figure 13 displays the difference between ẑ of (25) and z for the distributions of sample correlation 

coefficients with 0.1ρ = in cases of sample sizes n = 5 and n = 15.  The accuracy of our approximation 

increases as a sample size becomes large.  The degree of the difference ( ) ( )ẑ zΦ −Φ over

0.001 0.999x x x≤ ≤ is as follows. ( ) ( )ˆ 0.013z zΦ −Φ ≤ for n = 5, and ( ) ( )ˆ 0.003z zΦ −Φ ≤ for n = 15.  Our 

approximation is fairly “good”. 

 

 

       Figure 13.  Residual plots of ẑ z− for the distributions of sample correlation coefficients 

                 with 0.1ρ = for sample sizes n = 5 (solid line) and n = 15 (dashed line). 

 

Similarly, we give B(x) plots (Figure 14) and residual plots (Figure 15) for the distributions of sample 

correlation coefficients with 0.9ρ = in cases of n = 5 and n = 15. 
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Figure 14.  ( )ˆ( ) ( ) / ( )B x R x xη= plots for the distributions of sample correlation 

coefficients with 0.9ρ = in cases of sample sizes n = 5 and n = 15. 

 

 

 
 

Figure 15.  Residual plots of ẑ z− for the distributions of sample correlation coefficients 

with 0.9ρ = for sample sizes n = 5 (solid line) and n = 15 (dashed line). 

 

The degree of the difference ( ) ( )ẑ zΦ −Φ over 0.001 0.999x x x≤ ≤ is as follows. ( ) ( )ˆ 0.013z zΦ −Φ ≤

for n = 5, and ( ) ( )ˆ 0.003z zΦ −Φ ≤ for n = 15.  Our approximation is still fairly “good”. 

 

Example 3．Student’s t distributions 

Finally we shall consider a typical symmetric non-normal distribution, that is, Student’s t distribution 

denoted by ( )t θ , where ( )0θ > means the degrees of freedom. The density of ( )t θ is given by 
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         ( )
1

2 2

1
1 2 1

2

xf x

θ

θ

θ

θ θθπ

+
−

+⎛ ⎞Γ⎜ ⎟ ⎛ ⎞⎝ ⎠= +⎜ ⎟⎛ ⎞ ⎝ ⎠Γ⎜ ⎟
⎝ ⎠

.        (28) 

Note that t(1) is the standard Cauchy distribution. 

    For the approximation formula (16) we can examine the ratio ( ) / ( )R x xη through a plotting 

          
[ ] ˆ( )

0.5

( ), ˆ( ) ( )
R xz

R x h x γ θ
θβ

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

. 

A constant tendency around one of this plotting ensures our assumption ( ) ( )R x xη= .  We shall denote the 

function ˆ( ) / ( )R x xη by B(x) in the following figures.  We suppose that h(x) = x . 

 

 
Figure 16.  ( )ˆ( ) ( ) / ( )B x R x xη= plots for Student’s t distributions t(1) (dashed-dotted line),  

t(4) (dashed line), and t(10) (solid line). 

 

 
Figure 17.  Residual plots of ẑ z− for Student’s t distributions, t(1) (dashed-dotted line), 

t(4) (dashed line), and t(10) (solid line). 
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Figure 16 shows B(x) plots for t(1), t(4) and t(10).  A constant tendency of a B(x) plot increases as 

the parameterθ becomes large.  Figure 17 displays the difference between ẑ of (26) and z for t(1), t(4) and 

t(10). The degree of the difference ( ) ( )ẑ zΦ −Φ over 0.001 0.999x x x≤ ≤ is as follows. For t(1),

( ) ( )ˆ 0.035z zΦ −Φ ≤ . For t(4), ( ) ( )ˆ 0.002z zΦ −Φ ≤ . For t(10), ( ) ( )ˆ 0.0003z zΦ −Φ ≤ .  When the 

degree of freedomθ is more than four, our approximation seems “excellent”. 

 

V．Conclusions 

In the present paper we have examined the following several approximation methods for a 

normalizing transformation z = T(x). 

(I) A heuristic approach for the standard Cauchy distribution. 

(II) A method based on a symmetrization principle, which was applied to F and Beta distributions. 

(III) A method based on estimation of a function R(x), which was applied to distributions of Beta, 

Student’s t and sample correlation coefficients. 

Our conclusions are as follows. 

(1) Methods (I) and (III) have the good accuracy of approximations.  As for Method (II), the 

accuracy of approximation is not so bad.  

(2) Method (II) has great potential for applications. 

(3) The idea of Method (III) is available for transformation problems from any distribution to another 

distribution except for normal.   
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